Skip to main content
Log in

Effect of Acidity, Basicity and ZrO2 Phases of Cu–Ni/ZrO2 Catalysts on the Direct Synthesis of Diethyl Carbonate from CO2 and Ethanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cu–Ni/ZrO2 catalysts with different Cu:Ni molar ratios were synthesized and tested in the direct synthesis of diethyl carbonate from carbon dioxide and ethanol. The effect of Cu:Ni molar ratio on the acidity and basicity of the catalysts was investigated using NH3 and CO2-TPD, respectively. Experimental results revealed that Cu:Ni-3:1/ZrO2 and Cu:Ni-2:1/ZrO2 samples exhibited the largest acidity and basicity, as well as the highest yield to diethyl carbonate. In particular, these catalysts displayed very-high selectivity (i.e., larger than 95 %) and activity (i.e., equilibrium conversions are attained). Additionally, XRD and Raman studies showed that structural and crystalline properties of ZrO2 were modified with Cu:Ni ratios of 3:1 and 2:1 (Cu:Ni-1:1/ZrO2, Cu:Ni-1:2/ZrO2) which was related to the improved catalytic activity in comparison to Cu:Ni-1:1/ZrO2, Cu:Ni-1:2/ZrO2, Cu:Ni-1:3/ZrO2 and ZrO2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Parrish JP, Salvatore N, Woon K (2000) Tetrahedron 56:8207

    Article  CAS  Google Scholar 

  2. Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Chem Rev 110:4554

    Article  Google Scholar 

  3. Shaikh A, Sivaram S (1996) Chem Rev 96:951

    Article  CAS  Google Scholar 

  4. I. Musk, F. Strain US patent 385,712, 1(1945).

  5. Zhang P, Huang S, Wang S, Ma X (2011) Chem Eng J 172:526

    Article  CAS  Google Scholar 

  6. Fan M, Zhang P, Ma X (2007) Fuel 86:902

    Article  CAS  Google Scholar 

  7. Xin S, Wang L, Li H, Huang K, Li F (2014) Fuel Process Technol 126:453

    Article  CAS  Google Scholar 

  8. Keller T, Holtbruegge J, Górak A (2012) Chem Eng J 180:309

    Article  CAS  Google Scholar 

  9. Wang L, Li H, Xin S, He P, Cao Y, Li F, Hou X (2014) Appl Catal A Gen 471:19

    Article  CAS  Google Scholar 

  10. Arbeláez O, Orrego A, Bustamante F, Villa AL (2012) Top Catal 55:668

    Article  Google Scholar 

  11. Zevenhoven R, Eloneva S, Teir S (2006) Catal Today 115:73

    Article  CAS  Google Scholar 

  12. Zhang H, Liu H, Yue J (2014) Chem Rev 114:883

    Article  Google Scholar 

  13. Fujita S, Bhanage BM, Arai M, Ikushima Y (2001) Green Chem 3:87

    Article  CAS  Google Scholar 

  14. Gasc F, Thiebaud-Roux S, Mouloungui Z (2009) J Supercrit Fluids 50:46

    Article  CAS  Google Scholar 

  15. Yoshida Y, Arai Y, Kado S, Kunimori K, Tomishige K (2006) Catal Today 115:95

    Article  CAS  Google Scholar 

  16. Leino E, Mäki-Arvela P, Eränen K, Tenho M, Murzin DY, Salmi T, Mikkola J-P (2011) Chem Eng J 176:124

    Article  Google Scholar 

  17. Wang W, Wang S, Ma X, Gong J (2009) Catal Today 148:323

    Article  CAS  Google Scholar 

  18. Prymak I, Kalevaru VN, Wohlrab S, Martin A (2015) Catal Sci Technol 5:2322

    Article  CAS  Google Scholar 

  19. Bian J, Xiao M, Wang SJ, Lu YX, Meng YZ (2009) Chinese Chem Lett 20:352

    Article  CAS  Google Scholar 

  20. Romero A, De Correa CM, Bustamante F (2011) Rev Fac Ing-Univ Ant 57:14

    CAS  Google Scholar 

  21. Abdullah M, Khairurrijal K (2008) J Nano Saintek 1:28

    Google Scholar 

  22. Theivasanthi T, Alagar M (2011) Int J Phys Sci 6:3662

    Google Scholar 

  23. Borsa T, Cowley SW (2004) Am Chem Soc Div Fuel Chem 49:856

    Google Scholar 

  24. Bustamante F, Orrego A, Villegas S, Villa A (2012) Ind Eng Chem Res 51:8945

    Article  CAS  Google Scholar 

  25. Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K (1999) Catal Lett 58:225

    Article  CAS  Google Scholar 

  26. Lonyi F, Valyon J (2001) Microporous Mesoporous Mater 47:293

    Article  CAS  Google Scholar 

  27. Huo W, Zhou Z, Chen X, Dai Z, Yu G (2014) Bioresour Technol 159:143

    Article  CAS  Google Scholar 

  28. Goranova D, Avdeev G, Rashkov R (2014) Surf Coat Technol 240:204

    Article  CAS  Google Scholar 

  29. Wulfman C, Sadoun M, De Chapelle ML (2010) IRBM 31:257

    Article  Google Scholar 

  30. Jiang L, Zhu H, Razzaq R, Zhu M, Li C, Li Z (2012) Int J Hydrogen Energy 37:15914

    Article  CAS  Google Scholar 

  31. Štefanić G, Didović M, Musić S (2007) J Mol Struct 834–836:435

    Google Scholar 

  32. Zhao Y, Li W, Zhang M, Tao K (2002) Catal Commun 3:239

    Article  CAS  Google Scholar 

  33. López P, Mondragón G, Espinosa M, Mendoza D, Fernández M, Gómez A, Bonifacio J, Martínez G, Pérez R (2012) Int J Hydrogen Energy 37:9018

    Article  Google Scholar 

  34. Irusta S, Cornaglia LM, Lombardo EA (2002) J Catal 272:263

    Article  Google Scholar 

  35. Pengpanich S, Meeyoo V, Rirksomboon T (2004) Catal Today 95:95

    Article  Google Scholar 

  36. Khromova S, Smirnov A, Bulavchenko O, Saraev A, Kaichev V, Reshetnikov S, Yakovlev V (2014) Appl Catal A Gen 470:261

    Article  CAS  Google Scholar 

  37. Bian J, Xiao M, Wang S, Wang X, Lu Y, Meng Y (2009) Chem Eng J 147:287

    Article  CAS  Google Scholar 

  38. Zhang Z, Liu Z, Lu J, Liu Z (2011) Ind Eng Chem Res 50:1981

    Article  CAS  Google Scholar 

  39. Jung KT, Bell AT (2001) J Catal 204:339

    Article  CAS  Google Scholar 

  40. Xie S, Bell A (2000) Catal Lett 70:137

    Article  CAS  Google Scholar 

  41. Koeppel RA, Baiker A (1992) Appl Catal A 84:77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from Universidad de Antioquia through CODI Project Grant EO1557 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Bustamante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbeláez, O., Orrego, A., Bustamante, F. et al. Effect of Acidity, Basicity and ZrO2 Phases of Cu–Ni/ZrO2 Catalysts on the Direct Synthesis of Diethyl Carbonate from CO2 and Ethanol. Catal Lett 146, 725–733 (2016). https://doi.org/10.1007/s10562-016-1699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1699-4

Keywords

Navigation