Skip to main content
Log in

Kinetics of p-Nitrophenol Reduction Catalyzed by PVP Stabilized Copper Nanoparticles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Copper nanoparticles (CuNPs) in aqueous medium were prepared with alkaline hydrazine hydrate as the reductant and PVP as the stabilizing agent without any inert gas protection. Careful variation in the amount of reductant resulted in formation of two stable CuNPs dispersions with different average sizes and consequently different localized surface plasmon resonance absorbances. These two as-synthesized CuNPs dispersions were used to catalyze the model p-nitrophenol reduction reaction. The kinetics of reduction was monitored as a function of concentration and temperature of reactants. Using this we determined the activation energy, pre-exponential factor and the entropy of activation for the two types of CuNPs samples. Catalytic activities of the CuNPs were found to be affected mainly by their activation energies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zeng J, Zhang Q, Chen J, Xia Y (2010) Nano Lett 10:30

    Article  CAS  Google Scholar 

  2. Gao Z, Su R, Huang R, Qi W, He Z (2014) Nanoscale Res Lett 9:404

    Article  Google Scholar 

  3. Johnson JA, Makis JJ, Marvin KA, Rodenbusch SE, Stevenson KJ (2013) J Phys Chem C 117:22644

    Article  CAS  Google Scholar 

  4. Mei Y, Lu Y, Polzer F, Ballauff M (2007) Chem Mater 19:1062

    Article  CAS  Google Scholar 

  5. Pandey S, Mishra SB (2014) Carbohydr Polym 113:525

    Article  CAS  Google Scholar 

  6. Karakhanova EA, Maximova AL, Kardashevaa YS, Skorkin VA, Kardasheva SV, Predeinaa VV, Talanovaa MY, Lurie-Lukeb E, Seeleyb JA, Cronb SL (2010) Appl Catal A 385:62

    Article  Google Scholar 

  7. Deka P, Deka RC, Bharali P (2014) New J Chem 38:1789

    Article  CAS  Google Scholar 

  8. Herves P, Perez-Lorenzo M, Liz-Marzan LM, Dzubiella J, Lu Y, Ballauff M (2012) Chem Soc Rev 41:5577

    Article  CAS  Google Scholar 

  9. Dieckmann MS, Gray KA (1996) Water Res 30:1169

    Article  CAS  Google Scholar 

  10. Zaharia I, Diaconu I, Ruse E, Nechifor G (2012) Dig J Nanomater Bios 7(3):1303

    Google Scholar 

  11. Patil D, Nag S, Basak A, Nag A (2008) Int J Chem Sci 6(1):11

    CAS  Google Scholar 

  12. Goia DV (2004) J Mater Chem 14:451

    Article  CAS  Google Scholar 

  13. Sergeev GB (2001) Russ Chem Rev 70:809

    Article  CAS  Google Scholar 

  14. Singh M, Sinha I, Mandal RK (2009) Mater Lett 63:425

    Article  CAS  Google Scholar 

  15. Chang SJ, Tung CA, Chen BW, Chou YC, Li CC (2013) RSC Adv 3:24005

    Article  CAS  Google Scholar 

  16. Wu SH, Chen DH (2004) J Colloid Interface Sci 273:165

    Article  CAS  Google Scholar 

  17. Deng D, Jin Y, Cheng Y, Qi T, Xiao F (2013) ACS Appl Mater Interfaces 5:3839

    Article  CAS  Google Scholar 

  18. Singh M, Sinha I, Premkumar M, Singh AK, Mandal RK (2010) Colloids Surf A 359:88

    Article  CAS  Google Scholar 

  19. Prucek R, Kvitek L, Panacek A, Vancurova L, Soukupova J, Jancik D, Zboril R (2009) J Mater Chem 19:8463

    Article  CAS  Google Scholar 

  20. Kaur R, Giordano C, Gradzielski M, Mehta SK (2014) Chem Asian J 9:189

    Article  CAS  Google Scholar 

  21. Grouchko M, Kamyshny A, Ben-Ami K, Magdassi SJ (2009) Nanopart Res 11:713

    Article  CAS  Google Scholar 

  22. Xian J, Hua Q, Jiang Z, Ma Y, Huang W (2012) Langmuir 28:6736

    Article  CAS  Google Scholar 

  23. Yang X, Zhong H, Zhu Y, Jiang H, Shen J, Huang J, Li C (2014) J Mater Chem A 2:9040

    Article  CAS  Google Scholar 

  24. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) J Phys Chem C 114:8814

    Article  CAS  Google Scholar 

  25. Narayanan R, E-Sayed MA (2004) Nano Lett 4:1343

    Article  CAS  Google Scholar 

  26. Noh JH, Meijboom R (2014) Appl Surf Sci 320:400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (ADV) acknowledges financial support received from UGC in form of JRF. The authors are thankful to Department of Chemistry, Banaras Hindu University for permitting the use of FTIR Spectrophotometer. TEM images were recorded at the Electron microscope facility of Department of Metallurgical Engineering IIT (BHU). The authors also acknowledge the use of characterization facilities at unit of Nanoscience and Technology on BHU campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A.D., Mandal, R.K. & Sinha, I. Kinetics of p-Nitrophenol Reduction Catalyzed by PVP Stabilized Copper Nanoparticles. Catal Lett 145, 1885–1892 (2015). https://doi.org/10.1007/s10562-015-1605-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1605-5

Keywords

Navigation