Skip to main content
Log in

In Situ and Simultaneous Synthesis of a Novel Graphene-Based Catalyst for Deep Hydrodesulfurization of Naphtha

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this research, a novel graphene-supported catalyst was prepared through which, a simultaneous chemical exfoliation of graphite and MoS2 powder performed preparing a new composite species and evaluated for the hydrodesulfurization reaction of naphtha and no sulfidation pretreatment was performed upon the catalyst. Also, the influences of the operating parameters such as temperature, and liquid hourly space velocity on HDS conversion evaluated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Song C (2003) Catal Today 86:211

    Article  CAS  Google Scholar 

  2. Topsøe H, Clausen BS, Massoth FE (1996) Hydrotreating catalysis. Springer, Berlin

    Book  Google Scholar 

  3. Whitehurst DD, Isoda T, Mochida I (1998) Adv Catal 42:345

    CAS  Google Scholar 

  4. Vasudevan PT, Zhang F (1994) Appl Catal A Gen 112:61

    Article  Google Scholar 

  5. Li ZR, Fu YL, Bao J, Jiang M (2001) Appl Catal A Gen 220:21

    Article  CAS  Google Scholar 

  6. Juentgen H (1986) Fuel 65:1436

    Article  CAS  Google Scholar 

  7. Valladares DL, Reinoso FR, Zgrablich G (1998) Carbon 36:1491

    Article  CAS  Google Scholar 

  8. Scaroni AW, Jenkins RG, Walker PL, Philip L (1985) Appl Catal A Gen 14:173

    Article  CAS  Google Scholar 

  9. Tan Z, Hui-ning X, Run-duo Z, Zi-Sheng Z, Kaliaguine S (2010) Carbon 48:1694

    Article  CAS  Google Scholar 

  10. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498

    Article  CAS  Google Scholar 

  11. Li X, Qi W, Mei D, Sushko ML, Aksay I, Liu J (2012) Adv Mater 24:5136

    Article  CAS  Google Scholar 

  12. Julkapli NM (2015) Int J Hydrogen Energy 40:948

    Article  CAS  Google Scholar 

  13. Xiang Q, Yu J, Jaroniec M (2012) Chem Soc Rev 41:782

    Article  CAS  Google Scholar 

  14. Xiang Q, Yu J (2013) J Phys Chem Lett 4:753

    Article  CAS  Google Scholar 

  15. Zhang Y, Shen B, Huang H, He Y, Fei B (2014) Appl Surf Sci 319:272

    Article  CAS  Google Scholar 

  16. Tuz Johra F, Jung WG (2014) Appl Surf Sci 317:1015

    Article  Google Scholar 

  17. Li X, Qi W, Mei D, Sushko ML, Aksay I, Liu J (2012) Adv Mater 24:5136

    Article  CAS  Google Scholar 

  18. Chang K, Chen W (2011) ACS Nano 5:4720

    Article  CAS  Google Scholar 

  19. Xiang Q, Yu J, Jaroniec M (2012) J Am Chem Soc 134:6575

    Article  CAS  Google Scholar 

  20. Liu N, Wang X, Xu W, Hu H, Liang J, Qiu J (2014) Fuel 119:163

    Article  CAS  Google Scholar 

  21. Du Q, Zheng M, Zhang L, Wang Y, Chen J, Xue L, Dai W, Ji G, Cao J (2010) Electrochim Acta 55:3897

    Article  CAS  Google Scholar 

  22. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  23. Jing Y, Ortiz-Quiles EO, Cabrera CR, Chen Zh, Zhou Zh (2014) Electrochim Acta 147:392

    Article  CAS  Google Scholar 

  24. Kaniyoor A, Baby TT, Ramaprabhu S (2010) J Mater Chem 20:8467

    Article  CAS  Google Scholar 

  25. Weber Th, Muijsers JC, Van Wolput JHMC, Verhagen CPJ, Niemantsverdriet JW (1996) J Phys Chem 100:14144

    Article  CAS  Google Scholar 

  26. Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) J Adv Phys 30:413

    Article  Google Scholar 

  27. Ferrari AC (2007) Solid State Commun 143:47

    Article  CAS  Google Scholar 

  28. Goki E, Hisato Y, Damien V, Takeshi F, Mingwei C, Manish Ch (2011) Nano Lett 11:5111

    Article  Google Scholar 

  29. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) ACS Nano 4:2695

    Article  CAS  Google Scholar 

  30. Sarno M, Garamella A, Cirillo C, Ciambelli P (2014) Chem Eng Trans 41:38

    Google Scholar 

  31. Mestl G, Srinivasan TK (1998) Catal ReV 40:451

    Article  CAS  Google Scholar 

  32. Kourosh K, Jianshi T, Minsheng W (2010) Nanoscale 2:429

    Article  Google Scholar 

  33. Mestl G, Ruiz P, Delmon B, Knozinger H (1994) J Phys Chem 98:11269

    Article  CAS  Google Scholar 

  34. Py MA, Maschke K (1981) Phys B 105:370

    Article  CAS  Google Scholar 

  35. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  36. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N (1994) Pure Appl Chem 66:1739

    Article  CAS  Google Scholar 

  37. Wang S, Tristan F, Minami D, Fujimori T, Cruz-Silva R, Terrones M, Takeuchi K, Teshima K, Rodríguez-Reinoso F, Endo M, Kaneko K (2014) Carbon 76:220

    Article  CAS  Google Scholar 

  38. Herrero M, Labajos FM, Rives V (2009) Appl Clay Sci 42:510

    CAS  Google Scholar 

  39. Dandekar A, Baker RJK, Vannice MA (1998) Carbon 36:1821

    Article  CAS  Google Scholar 

  40. Kelemen SR, Freund H, Mims CA (1984) J Vac Sci Technol A 2:987

    Article  CAS  Google Scholar 

  41. Kelemen SR, Freund H, Mims CA (1986) J Catal 97:228

    Article  CAS  Google Scholar 

  42. Otake Y, Jenkins RG (1993) Carbon 31:109

    Article  CAS  Google Scholar 

  43. Li X, Feng L, Zhang L, Dadyburjor DB, Kugler EL (2003) Molecules 8:13

    Article  CAS  Google Scholar 

  44. Feng L, Li X, Dadyburjor DB, Kugler E (2000) J Catal 190:1

    Article  CAS  Google Scholar 

  45. Bhaskar T, Reddy KR, Kumar CP, Murthy MRVS, Chary KVR (2001) Appl Catal A Gen 211:189

    Article  CAS  Google Scholar 

  46. Sexton BA, Hughes AE, Turney TW (1986) J Catal 97:390

    Article  CAS  Google Scholar 

  47. Vit Z, Cinibulk J (2001) React Kinet Catal Lett 72:189

    Article  CAS  Google Scholar 

  48. Shang H, Liu C, Xu Y, Qiu J (2007) Fuel Process Technol 88:117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazemeini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajjar, Z., Kazemeini, M., Rashidi, A. et al. In Situ and Simultaneous Synthesis of a Novel Graphene-Based Catalyst for Deep Hydrodesulfurization of Naphtha. Catal Lett 145, 1660–1672 (2015). https://doi.org/10.1007/s10562-015-1563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1563-y

Keywords

Navigation