Skip to main content
Log in

Synthesis of Zirconia–Palladium Core–Shell Nanoparticles as Three-Way Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Zirconia–palladium (ZrO2–Pd) core–shell nanoparticles were synthesized by two different methods, namely, hydrothermal and common precipitation method. A non-ionic surfactant polyvinylpyrrolidone was used as dispersant while ammonia solution as precipitator to fabricate the zirconia core particles, on which the palladium shell was subsequently forming by reducing palladium nitrate with an eco-friendly reductant–ascorbic acid. A mechanical blending method was applied to fabricate the three-way catalysts (TWCs). The physicochemical properties of ZrO2–Pd nanoparticles and catalytic performance of each catalyst were systematically studied and compared. The scanning electron microscopy, transmission electron microscopy-energy diffraction X-ray, BET, X-ray diffraction of the ZrO2 or the ZrO2–Pd nanoparticles results clarified that ZrO2–Pd core–shell nanoparticles with high dispersion and surface area were successfully prepared through hydrothermal method. A higher content of Pd was obtained in catalysts fabricated by hydrothermal method according to the inductively coupled plasma atomic emission spectrometry results. The CO pulse adsorption, H2-temperature-programmed reduction results and catalytic tests indicated that the aged catalysts (calcined at 1000 °C) possessed the higher active component dispersion, lower reduction temperature and performed the higher catalytic activity than the fresh catalysts (calcined at 550 °C), especially for that with ZrO2–Pd core–shell nanoparticles synthesized through hydrothermal method. Thus, the ZrO2–Pd core–shell structure can significantly enhance the thermal stability of TWCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hatanaka M, Takahashi N, Tanabe T, Nagai Y, Dohmae K, Aoki Y, Yoshida T, Shinjoh H (2010) Appl Catal B 99:336–342

    Article  CAS  Google Scholar 

  2. Wang G, You R, Meng M (2013) Fuel 103:799–804

    Article  CAS  Google Scholar 

  3. Nakatsuji T, Kunishige M, Li J, Hashimoto M, Matsuzono Y (2013) Catal Commun 35:88–94

    Article  CAS  Google Scholar 

  4. Heo I, Yoon DY, Cho BK, Nam I-S, Choung JW, Yoo S (2012) Appl Catal B 121–122:75–87

    Article  Google Scholar 

  5. Rodríguez GCM, Kelm K, Heikens S, Grünert W, Saruhan B (2012) Catal Today 184:184–191

    Article  Google Scholar 

  6. Ozawa M, Okouchi T, Haneda M (2014) Catal Today 242:351–356

    Google Scholar 

  7. Papavasiliou A, Tsetsekou A, Matsouka V, Konsolakis M, Yentekakis IV, Boukos N (2011) Appl Catal B 106:228–241

    CAS  Google Scholar 

  8. Wojtysiak S, Walczyński MS, Kudelski A (2011) Vib Spectrosc 57:261–269

    Article  CAS  Google Scholar 

  9. Kobayashi Y, Ishii Y, Yamane H, Watanabe K-I, Koda H, Kunigami H, Kunigami H (2014) Colloids Surf A 448:88–92

    Article  CAS  Google Scholar 

  10. Liu Y-T, Yuan Q-B, Duan D-H, Zhang Z-L, Hao X-G, Wei G-Q, Liu S-B (2013) J Power Source 243:622–629

    Article  CAS  Google Scholar 

  11. Taguchi M, Nakane T, Matsushita A, Sakka Y, Uchikoshi T, Funazukuri T, Naka T (2014) J Supercrit Fluids 85:57–61

    Article  CAS  Google Scholar 

  12. Wang Z, Lu Y, Yuan S, Shi L, Zhao Y, Zhang M, Deng W (2013) J Colloid Interface Sci 396:9–15

    Article  CAS  Google Scholar 

  13. Zhang R, Liu H, He D (2012) Catal Commun 26:244–247

    Article  CAS  Google Scholar 

  14. Zhao J, Zhang D, Zhao J (2011) J Solid State Chem 184:2339–2344

    Article  CAS  Google Scholar 

  15. Sharma P, Darabdhara G, Reddy TM, Borah A, Bezboruah P, Gogoi P, Hussain N, Sengupta P, Das MR (2013) Catal Commun 40:139–144

    Article  CAS  Google Scholar 

  16. Wojtysiak S, Solla-Gullón J, Dłużewski P, Kudelski A (2014) Colloids Surf A 441:178–183

    Article  CAS  Google Scholar 

  17. Zhang Z, Xu L, Wang Z, Xu Y, Chen Y (2010) J Nat Gas Chem 19:417–421

    Article  CAS  Google Scholar 

  18. Cao Y, Ran R, Wu X, Zhao B, Wan J, Weng D (2013) Appl Catal A 457:52–61

    Article  CAS  Google Scholar 

  19. Simplício LMT, Brandão ST, Sales EA, Lietti L, Bozon-Verduraz F (2006) Appl Catal B 63:9–14

    Article  Google Scholar 

  20. Kolli T, Kanerva T, Huuhtanen M, Vippola M, Kallinen K, Kinnunen T, Lepistö T, Lahtinen J, Keiski RL (2010) Catal Today 154:303–307

    Article  CAS  Google Scholar 

  21. Fernandes DM, Scofield CF, Alcover Neto A, Cardoso MJB, Zotin JL, Zotin FMZ (2012) Chem Eng J 189–190:62–67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoqiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Li, J., Wu, Q. et al. Synthesis of Zirconia–Palladium Core–Shell Nanoparticles as Three-Way Catalysts. Catal Lett 145, 1420–1428 (2015). https://doi.org/10.1007/s10562-015-1535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1535-2

Keywords

Navigation