Skip to main content
Log in

New Vanadium Keggin Heteropolyacids Encapsulated in a Silica Framework: Recyclable Catalysts for the Synthesis of Highly Substituted Hexahydropyrimidines Under Suitable Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Solid acid catalysts based on the direct incorporation of the vanadium Keggin heteropolyacid (PMo11V) structure during the synthesis of silica by the sol–gel technique, in acidic media using tetraethyl orthosilicate (PMo11VSiO21, PMo11VSiO22, PMo11VSiO23, and PMo11VSiO24), were prepared and characterized by 31P-NMR, FT-IR, XRD, and textural properties (SBET). The acidic characteristics of the catalysts were determined by potentiometric titration with n-butylamine. A series of highly substituted hexahydropyrimidines were synthesized using these new materials, encapsulated in a silica framework, as catalyst in solvent-free conditions. This methodology requires short reaction time (1.5 h), a temperature of 80 °C in solvent free-conditions to obtain good to excellent yields of trifluoromethyl-hexahydropyrimidine derivatives. The Keggin catalyst embedded in the silica matrix is insoluble in polar media, which allows easy removal of the reaction products without affecting their catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Corma A, Garcia H (2006) Adv Synth Catal 348:1391–1412

    Article  CAS  Google Scholar 

  2. Sheldon R (2012) Chem Soc Rev 41:1437–1451

    Article  CAS  Google Scholar 

  3. Datan A, Kulkarni A, Torok B (2012) Green Chem 14:17–37

    Article  Google Scholar 

  4. Watson W (2012) Green Chem 14:251–256

    Article  CAS  Google Scholar 

  5. Mulvihill M, Beach M, Zimmerman E, Anastas P (2011) Annu Rev Env Resour 36:271–293

    Article  Google Scholar 

  6. Tanaka K (2003) Solvent-free organic synthesis. Willey-VCH, Weinheim

    Book  Google Scholar 

  7. Reddy B, Sreekanth P, Lakshmanan P (2005) J Mol Catal A 237:93–100

    Article  CAS  Google Scholar 

  8. Clark J (2002) Acc Chem Res 35:791–797

    Article  CAS  Google Scholar 

  9. Okuhara T (2002) Chem Rev 102:3641–3666

    Article  CAS  Google Scholar 

  10. Misono M, Nojiri N (1990) Appl Catal A 64:1–30

    Article  CAS  Google Scholar 

  11. Yadav G (2005) Catal Surv Asia 9:117–137

    Article  CAS  Google Scholar 

  12. Kozhevnikov I (2007) J Mol Catal A 262:86–92

    Article  CAS  Google Scholar 

  13. Misono M, Ono I, Koyano G, Aoshima A (2002) Pure Appl Chem 72:1305–1311

    Google Scholar 

  14. Romanelli G, Sathicq A, Autino J, Thomas H, Baronetti G (2007) Synth Commun 37:3907–3916

    Article  CAS  Google Scholar 

  15. Sathicq A, Romanelli G, Ponzinibbio A, Baronetti G, Thomas H (2010) Lett Org Chem 7:511–518

    Article  CAS  Google Scholar 

  16. Ruiz D, Baronetti G, Thomas H, Romanelli G (2012) Curr Catal 1:67–72

    Article  CAS  Google Scholar 

  17. Pasquale G, Ruiz D, Autino J, Baronetti G, Thomas H, Romanelli G (2012) C. R. Chimie 15:758–763

    Article  CAS  Google Scholar 

  18. Ruiz D, Autino J, Quaranta N, Vázquez P, Romanelli G (2012) Sci. World J

  19. Muñoz M, Sathicq G, Romanelli G, Hernández S, Cabello C, Botto I, Capron M (2013) J Porous Mat 20:65–73

    Article  Google Scholar 

  20. Vázquez P, Blanco M, Cáceres C (1999) Catal Lett 60:205–215

    Article  Google Scholar 

  21. Caetano C, Fonseca I, Ramos A, Vital J, Castanheiro J (2008) Catal Commun 9:1996–1999

    Article  CAS  Google Scholar 

  22. Popa A, Sasca V, Kiss E, Marinkovic-Neducin R, Holclajtner-Antunovic I (2011) Mat Res Bull 46:19–25

    Article  CAS  Google Scholar 

  23. Popa A, Sasca V, Kiss E, Marinkovic-Neducin R, Bokorov M, Holclajtner-Antunovic I (2010) Mat Chem Phys 119:465–470

    Article  CAS  Google Scholar 

  24. Venkat Rao N, Vaisalini B, Mounika B, Harika L, Kumar Desu V, Nam S (2013) Int J Pharm Chem Res 2:2278–8700

    Google Scholar 

  25. Sasada T, Kobayashi F, Sakai N, Konakahara T (2009) Org Lett 11:2161–2164

    Article  CAS  Google Scholar 

  26. Janati F, Heravi MM, Mirshokraie A (2013) J. Chem

  27. Gravier D, Dupin JP, Casadebaig F, Hou G, Boisseau M, Bernard H (1989) Eur J Med Chem 24:531–535

    Article  CAS  Google Scholar 

  28. Granados R, Alvarez M, Valls N, Salas M (1983) J Heterocycl Chem 20:1271–1275

    Article  CAS  Google Scholar 

  29. Evans R (1967) Aust J Chem 20:1643–1661

    Article  CAS  Google Scholar 

  30. Finch H, Peterson E, Ballard S (1952) J Am Chem Soc 8:2016–2018

    Article  Google Scholar 

  31. Kappe O, Falsone S, Fabian W, Belaj F (1999) F Heterocycl 51:77–84

    Article  CAS  Google Scholar 

  32. Saloutin V, Burgart Y, Kuzueva O, Kappe O, Chupakhin O (2000) J Fluor Chem 103:17–23

    Article  CAS  Google Scholar 

  33. Zohdi H, Rateb N, Elnagdy S (2011) Eur J Med Chem 46:5636–5640

    Article  CAS  Google Scholar 

  34. Li G, Wu C, Guo L, Yang F (2011) Acta Cryst E67:704–705

    Google Scholar 

  35. Bose D, Sudharshan M, Chavhan S (2005) Arkivoc 3:228–236

    Article  Google Scholar 

  36. Ryabukhin S, Plaskon A, Ostapchuk E, Volochyuk D, Shishkin O, Tolmachev A (2008) J Fluor Chem 129:625–631

    Article  CAS  Google Scholar 

  37. Reddy Ch, Mahesh M, Raju P, Babu T, Reddy V (2002) Tetrahedron Lett 43:2657–2659

    Article  CAS  Google Scholar 

  38. Sathicq Á, Ruiz D, Constantieux T, Rodriguez J, Romanelli G (2014) Synlett 25:881–883

    Article  CAS  Google Scholar 

  39. Agbaje O, Fadeyi O, Fadeyi S, Myles L, Okoro C, Bioorg C (2011) Med Chem Lett 21:989–992

    Article  CAS  Google Scholar 

  40. Suresh, Sandhu JS (2012) Arkivoc 1:66–133

    Google Scholar 

  41. Kern F, Ruf St, Emig G (1997) Appl Catal A 150:143–151

    Article  CAS  Google Scholar 

  42. Vázquez P, Pizzio L, Romanelli G, Autino J, Cáceres C, Blanco M (2002) Appl Catal A 235:233–240

    Article  Google Scholar 

  43. Martinez JR, Ruiz F (2002) Rev Mex Fis 48:142–149

    CAS  Google Scholar 

  44. D´allessandro O, Sathicq G, Palermo V, Sanchez LM, Thomas H, Vázquez P, Constantieux T, Romanelli G (2012) Curr Org Chem 16:2763–2769

    Article  Google Scholar 

  45. Kappe CA (1997) J Org Chem 62:7201–7204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CONICET, ANPCyT, UNLP, Centre National de la Recherche Scientifique (CNRS) and the Université Paul Cézanne d’Aix-Marseille for their financial support. VP, AGS, PGV and GPR are members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Romanelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palermo, V., Sathicq, Á., Constantieux, T. et al. New Vanadium Keggin Heteropolyacids Encapsulated in a Silica Framework: Recyclable Catalysts for the Synthesis of Highly Substituted Hexahydropyrimidines Under Suitable Conditions. Catal Lett 145, 1022–1032 (2015). https://doi.org/10.1007/s10562-015-1498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1498-3

Keywords

Navigation