Skip to main content
Log in

Atomic Layer Deposition of Zinc Oxide on HZSM-5 Template and Its Methanol Aromatization Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel route for the incorporation of zinc oxide (ZnO) into both the pore channels and surface of the HZSM-5 supports with high homogeneity via atomic layer deposition (ALD) technology is presented. The structural characteristics and methanol-to-aromatics (MTA) performances of synthesized material [ZnO/HZSM-5 (ALD)] were examined against the ZnO/HZSM-5 catalyst prepared by conventional incipient wetness impregnation (IWI) method. After the introduction of ZnO to parent HZSM-5 by IWI, the total BTX aromatics selectivity increased from 29.8 to 34.1 %, whereas the catalyst prepared by ALD with the same loading of Zn species gave a BTX selectivity of 40.1 %. The better BTX activity and selectivity in MTA for ZnO/HZSM-5 (ALD) catalyst could be attributed to the fact that ALD is more favorable for the entrance of Zn species into zeolite crystals. Therefore the synergy effect between the new generated Zn-Lewis sites and Bronsted acid sites inside the zeolite crystals can be effectively enhanced.

Graphical Abstract

The deposited ZnO by atomic layer deposition (ALD) was presented in layer-like form, whereas ZnO loaded by incipient wetness impregnation existed as particle morphology. The combined results of N2 adsorption–desorption, ICP-AES and XPS indicated that ALD was more favorable for the entrance of Zn species into zeolite crystals. As a consequence, the synergy effect between the new generated Zn-Lewis sites and Bronsted acid sites inside the zeolite crystals can be effectively enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Salvi BL, Subramanian KA, Panwar NL (2013) Renew Sustain Energy Rev 25:404

    Article  CAS  Google Scholar 

  2. Kamarudin SK, Shamsul NS, Ghani JA, Chia SK, Liew HS, Samsudin AS (2013) Bioresour Technol 129:463

    Article  CAS  Google Scholar 

  3. Kang SH, Bae JW, Prasad PSS, Oh JH, Jun KW, Song SL, Min KS (2009) J Ind Eng Chem 15:665

    Article  CAS  Google Scholar 

  4. Rezaei PS, Shafaghat H, Daud WMAW (2014) Appl Catal A Gen 469:490

    Article  CAS  Google Scholar 

  5. Song C, Liu SL, Li XJ, Xie SJ, Liu ZG, Xu LY (2014) Fuel Process Technol 126:60

    Article  CAS  Google Scholar 

  6. Majhi S, Pant KK (2014) J Ind Eng Chem 20:2364

    Article  CAS  Google Scholar 

  7. Esquivel D, Cruz-Cabeza AJ, Jimenez-Sanchidrian C, Romero-Salguero FJ (2013) Microporous Mesoporous Mater 179:30

    Article  CAS  Google Scholar 

  8. Lopez-Sanchez JA, Conte M, Landon P, Zhou W, Bartley JK, Taylor SH, Carley AF, Kiely CJ, Khalid K, Hutchings GJ (2012) Catal Lett 142:1049

    Article  CAS  Google Scholar 

  9. Conte M, Lopez-Sanchez JA, He Q, Morgan DJ, Ryabenkova Y, Bartley JK, Carley AF, Taylor SH, Kiely CJ, Khalid K, Hutchings GJ (2012) Catal Sci Technol 2:105

    Article  CAS  Google Scholar 

  10. Jing HJ, Yang FK, Xia YM, Feng JQ, Liu JL, Zong QY (2012) Petrol Sci Technol 30:1737

    Article  CAS  Google Scholar 

  11. Choudhary VR, Mondal KC, Mulla SAR (2005) Angew Chem Int Ed 44:4381

    Article  CAS  Google Scholar 

  12. Smieskova A, Rojasova E, Hudec P, Sabo L (2004) React Kinet Catal L 82:227

    Article  CAS  Google Scholar 

  13. Li YN, Liu SL, Xie SJ, Xu LY (2009) Appl Catal A Gen 360:8

    Article  CAS  Google Scholar 

  14. Zhang GQ, Bai T, Chen TF, Fan WT, Zhang X (2014) Ind Eng Chem Res 53:14932

    Article  CAS  Google Scholar 

  15. Song C, Liu KF, Zhang DZ, Liu SL, Li XJ, Xie SJ, Xu LY (2014) Appl Catal A Gen 470:15

    Article  CAS  Google Scholar 

  16. Lu JL, Elam JW, Stair PC (2013) Acc Chem Res 46:1806

    Article  CAS  Google Scholar 

  17. George SM (2010) Chem Rev 110:111

    Article  CAS  Google Scholar 

  18. Chen R, Kim H, McIntyre PC, Porter DW, Bent SF (2005) Appl Phys Lett 86:191910

    Article  Google Scholar 

  19. Sheng T, Chen H, Xiong S, Chen XQ, Wang Y (2014) AIChE J 60:3614

    Article  CAS  Google Scholar 

  20. Wang CC, Kei CC, Perng TP (2011) Nanotechnology 22:365702

    Article  Google Scholar 

  21. Stair PC (2008) J Chem Phys 128:182507

    Article  Google Scholar 

  22. Haukka S, Kytokivi A, Lakomaa EL, Lehtovirta U, Lindblad M, Lujala V, Suntola T (1995) Stud Surf Sci Catal 91:957

    Article  CAS  Google Scholar 

  23. Verheyen E, Sree SP, Thomas K, Dendooven J, De Prins M, Vanbutsele G, Breynaert E, Gilson JP, Kirschhock CEA, Detavernier C, Martens JA (2014) Chem Commun 50:4610

    Article  CAS  Google Scholar 

  24. Vandegehuchte BD, Thybaut JW, Detavernier C, Deduytsche D, Dendooven J, Martens JA, Sree SP, Koranyi TI, Marin GB (2014) J Catal 311:433

    Article  CAS  Google Scholar 

  25. Vuori H, Silvennoinen RJ, Lindblad M, Osterholm H, Krause AOI (2009) Catal Lett 131:7

    Article  CAS  Google Scholar 

  26. Kim DH, Seo HO, Jeong MG, Kim YD (2014) Catal Lett 144:56

    Article  CAS  Google Scholar 

  27. Seo HO, Sim CW, Kim KD, Kim YD, Lim DC (2012) Chem Eng J 183:381

    Article  CAS  Google Scholar 

  28. Rey A, Garcia-Munoz P, Hernandez-Alonso MD, Mena E, Garcia-Rodriguez S, Beltran FJ (2014) Appl Catal B Environ 154:274

    Article  Google Scholar 

  29. Korosi L, Oszko A, Galbacs G, Richardt A, Zollmer V, Dekany I (2007) Appl Catal B Environ 77:175

    Article  CAS  Google Scholar 

  30. Wuyts S, De Vos DE, Verpoort F, Depla D, De Gryse R, Jacobs PA (2003) J Catal 219:417

    Article  CAS  Google Scholar 

  31. Niu XJ, Gao J, Miao Q, Dong M, Wang GF, Fan WB, Qin ZF, Wang JG (2014) Microporous Mesoporous Mater 197:252

    Article  CAS  Google Scholar 

  32. Li Y, Zhang WH, Zhang L, Yang QH, Wei ZB, Feng ZC, Li C (2004) J Phys Chem B 108:9739

    Article  CAS  Google Scholar 

  33. El-Malki EM, van Santen RA, Sachtler WMH (1999) J Phys Chem B 103:4611

    Article  CAS  Google Scholar 

  34. Emeis CA (1993) J Catal 141:347

    Article  CAS  Google Scholar 

  35. Parry EP (1963) J Catal 2:371

    Article  CAS  Google Scholar 

  36. Long HY, Jin FY, Xiong G, Wang XS (2014) Microporous Mesoporous Mater 198:29

    Article  CAS  Google Scholar 

  37. Liu JX, Hong ASNL, He N, Liu GD, Liang CC, Zhang XF, Guo HC (2013) Chem Eng J 218:1

    Article  CAS  Google Scholar 

  38. Stocker M (1999) Microporous Mesoporous Mater 29:3

    Article  CAS  Google Scholar 

  39. Xin YB, Qi PY, Duan XP, Lin HQ, Yuan YZ (2013) Catal Lett 143:798

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from National Natural Science Foundation of China (No. 21406034, 21276050 and 21076044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Min Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Xiao, W.Y. & Xiao, G.M. Atomic Layer Deposition of Zinc Oxide on HZSM-5 Template and Its Methanol Aromatization Performance. Catal Lett 145, 860–867 (2015). https://doi.org/10.1007/s10562-015-1496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1496-5

Keywords

Navigation