Skip to main content
Log in

Dual Acidic Ionic Liquid Immobilized on α-Fe2O3–MCM-41 Magnetic Mesoporous Materials as the Hybrid Acidic Nanocatalyst for the Synthesis of Pyrimido[4,5-d]pyrimidine Derivatives

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Magnetic α-Fe2O3–MCM-41 mesoporous material functionalized by dual acidic ionic liquid (DAIL) was prepared through a two-step approach as a novel powerful acidic catalyst which provides high ionic media for reactions, by means of post-surface grafting of the mesochannels of α-Fe2O3–MCM-41 materials with 3-sulfobutyl-1-(3-propyltrimethoxysilane)imidazolium hydrogen sulfate as DAIL. Mesoporous MCM-41 was simply packed on the surface of ferric oxide nanoparticles and DAIL was efficiently incorporated into the mesochannels of MCM-41 generating Lewis and Brönsted acidic sites. The catalyst was characterized by FT-IR, X-ray powder diffraction, HRTEM, vibrating sample magnetometer, X-ray energy diffraction spectra, thermogravimetric and differential thermal analyses, and N2 adsorption–desorption measurements. The synthesized hybrid acidic MCM-41 showed good catalytic performance in the one-pot synthesis of pyrimido[4,5-d]pyrimidine derivatives using 6-aminouracil, aldehyde, and urea or thiourea under solvent free conditions. Moreover, it was proved that under this condition, the use of such a hybrid material as a catalyst plays the role of rendering the reactions while neither the α-Fe2O3–MCM-41 nor the 3-methyl-1-(4-sulfonic acid)butylimidazolium hydrogen sulfate were able to promote this reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Yadav GD, Sharma RV, Katole SO (2013) Ind Eng Chem Res 52:10133

    Article  CAS  Google Scholar 

  2. Parangi TF, Wani BN, Chudasama UV (2013) Ind Eng Chem Res 52:8969

    Article  CAS  Google Scholar 

  3. Corma A (2004) Catal Rev Sci Eng 46:369

    Article  CAS  Google Scholar 

  4. Shylesh S, Schnemann V, Thiel WR (2010) Angew Chem Int Ed 49:3428

    Article  CAS  Google Scholar 

  5. Molnar A, Rac B (2006) Curr Org Chem 10:1697

    Article  CAS  Google Scholar 

  6. Hoffmann F, Cornelius M, Morell J, Frçba M (2006) Angew Chem 118:3290

    Article  Google Scholar 

  7. Rostamizadeh S, Nojavan M, Aryan R, Isapoor E, Azad M (2013) J Mol Catal A 374–375:102

    Article  Google Scholar 

  8. Galarneau A, Desplantier-Giscard D, Di Renzo F, Fajula F (2001) Catal Today 68:191

    Article  CAS  Google Scholar 

  9. Rostamizadeh S, Shadjou N, Azad M, Jalali N (2012) Catal Commun 26:218

    Article  CAS  Google Scholar 

  10. Wang C, Yang S, Chang H, Peng Y, Li J (2013) J Mol Catal A 376:13

    Article  CAS  Google Scholar 

  11. Yang Q, Wei Z, Xing H, Ren Q (2008) Catal Commun 9:1307

    Article  CAS  Google Scholar 

  12. Wang YY, Gong X, Wang Z, Dai LY (2010) J Mol Catal A 322:7

    Article  CAS  Google Scholar 

  13. El-Moghazy SM, Diaa IA, Nagwa AM, Nahla FAH, El-Khouly AS (2011) Sci Pharm 79:429

    Article  CAS  Google Scholar 

  14. Dabiri M, Arvin-Nezhad H, Khavasi HR, Bazgir A (2007) Tetrahedron 63:1770

    Article  CAS  Google Scholar 

  15. Devi I, Borah HN, Bhuyan PJ (2004) Tetrahedron Lett 45:2405

    Article  CAS  Google Scholar 

  16. Kidwai M, Singhal K, Kukreja S (2007) Z Naturforsch 62b:732

    Google Scholar 

  17. Gupta P, Gupta S, Sachar A, Kour D, Singh J, Sharma RL (2010) J Heterocyclic Chem 47:324

    Article  CAS  Google Scholar 

  18. Graboyes H, Jaffe GE, Pachter IJ, Rosenbloom JP, Villani AJ, Wilson JW, Weinstock J (1968) J Med Chem 11:568

    Article  CAS  Google Scholar 

  19. Zhang Q, Su H, Luo J, Wei Y (2012) Green Chem 14:201

    Article  CAS  Google Scholar 

  20. Jahanbin B, Davoodnia A, Behmadi H, Tavakoli-Hoseini N (2012) Bull Korean Chem Soc 33:2140

    Article  CAS  Google Scholar 

  21. Zhang Q, Luo J, Wei Y (2010) Green Chem 12:2246

    Article  CAS  Google Scholar 

  22. Kassaee MZ, Masrouri H, Movahedi F (2011) Appl Catal A 359:28

    Article  Google Scholar 

  23. Sahoo SK, Agarwal K, Singh AK, Polke BG, Raha KC (2010) Int J Eng Sci Technol 2:118

    Google Scholar 

  24. Elías VR, Oliva MI, Vaschetto EG, Urreta SE, Eimer GA, Silvetti SP (2010) J Magn Magn Mater 322:3438

    Article  Google Scholar 

  25. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2001) Microporous Mesoporous Mater 44–45:755

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge K. N. Toosi University Research Council for partial financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahnaz Rostamizadeh.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostamizadeh, S., Nojavan, M., Aryan, R. et al. Dual Acidic Ionic Liquid Immobilized on α-Fe2O3–MCM-41 Magnetic Mesoporous Materials as the Hybrid Acidic Nanocatalyst for the Synthesis of Pyrimido[4,5-d]pyrimidine Derivatives. Catal Lett 144, 1772–1783 (2014). https://doi.org/10.1007/s10562-014-1330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1330-5

Keywords

Navigation