Skip to main content
Log in

Ceria Prepared by Flame Spray Pyrolysis as an Efficient Catalyst for Oxidation of Diesel Soot

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ceria has been prepared by flame spray pyrolysis and tested for activity in catalytic soot oxidation. In tight contact with soot the oxidation activity (measured in terms of the temperature of maximal oxidation rate, Tmax) of the flame made ceria is among the highest reported for CeO2. This can to a significant degree be ascribed to the large surface area achieved with the flame spray pyrolysis method. The importance of the inherent soot reactivity for the catalytic oxidation was studied using various soot samples, and the reactivity of the soot was found to have a significant impact, as the Tmax-value for oxidation in tight contact with a catalyst scaled linearly with the Tmax-value in non-catalytic soot oxidation. The Tmax-value in non-catalytic soot oxidation was in turn observed to scale linearly with the H/C ratio of the carbonaceous materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ris C (2007) Inhal Toxicol 19:229–239

    Article  CAS  Google Scholar 

  2. Chameides WL, Bergin M (2002) Science 297:2214–2215

    Article  CAS  Google Scholar 

  3. Kerr RA (2013) Science 339:382

    Article  CAS  Google Scholar 

  4. Frank B, Schuster M, Schlögl R, Su DS (2013) Angew Chem Int Ed 52:2673–2677

    Article  CAS  Google Scholar 

  5. Kittelson DB (1998) J Aerosol Sci 29:575–588

    Article  CAS  Google Scholar 

  6. Andreae MO, Ramanathan V (2013) Science 340:280–281

    Article  CAS  Google Scholar 

  7. Van Setten BAAL, Makkee M, Moulijn JA (2001) Catal Rev Sci Eng 43:489–564

    Article  Google Scholar 

  8. Adler J (2005) Int J Appl Ceram Technol 2:429–439

    Article  CAS  Google Scholar 

  9. Stamatelos AM (1997) Energy Conserv Manag 38:83–99

    Article  Google Scholar 

  10. Southward BWL, Basso S (2008) SAE paper: 2008-01-0481

  11. Neeft J, Makkee M, Moulijn JA (1996) Chem Eng J 64:295–302

    CAS  Google Scholar 

  12. Konstandopoulos AG, Lorentzou S, Pagkoura C, Ohno K, Ogyu K, Oya T (2007) SAE paper: 2007-01-1950

  13. Konstandopoulos AG, Papaioannou E (2008) Kona 26:36–65

    Article  Google Scholar 

  14. Konstandopolous A, Papaioannou E, Zarvalis D, Skopa S, Baltzopoulou P, Kladopoulou E, Kostoglou M, Lorentzou S (2005) SAE paper: 2005-01-0670

  15. Kumar PA, Tanwar MD, Bensaid S, Russo N, Fino D (2012) Chem Eng J 207–208:258–266

    Article  Google Scholar 

  16. Trovarelli A (1996) Catal Rev Sci Eng 38:439–520

    Article  CAS  Google Scholar 

  17. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) Catal Today 50:353–367

    Article  CAS  Google Scholar 

  18. Bueno-López A (2014) Appl Catal B 146:1–11

    Article  Google Scholar 

  19. Herbst K, Mogensen G, Huber F, Østberg M, Skjøth-Rasmussen MS (2010) Catal Today 157:297–302

    Article  CAS  Google Scholar 

  20. McKee DW (1985) Carbon 23:707–713

    Article  CAS  Google Scholar 

  21. Strobel R, Baiker A, Pratsinis SE (2006) Adv Powder Technol 17:457–480

    Article  CAS  Google Scholar 

  22. Schimmoeller B, Pratsinis SE, Baiker A (2011) ChemCatChem 3:1234–1256

    Article  CAS  Google Scholar 

  23. Mädler L, Stark WJ, Pratsinis SE (2002) J Mater Res 17:1356–1362

    Article  Google Scholar 

  24. Stark WJ, Maciejewski M, Mädler L, Pratsinis SE, Baiker A (2003) J Catal 220:35–43

    Article  CAS  Google Scholar 

  25. Wagloehner S, Baer JN, Kureti S (2014) Appl Catal B 147:1000–1008

    Article  CAS  Google Scholar 

  26. Summers JC, Van Houtte S, Psaras D (1996) Appl Catal B 10:139–156

    Article  CAS  Google Scholar 

  27. Lahaye J, Boehm S, Chambrion PH, Ehrburger P (1996) Combust Flame 104:199–207

    Article  CAS  Google Scholar 

  28. Pattas K, Samaras Z, Sherwood D, Umehara K, Cantiani C, Chariol OA, Barthe P, Lemaire J (1992) SAE paper: 920363

  29. Lepperhoff G, Lüders H, Barthe P, Lemaire J (1995) SAE paper: 950369

  30. Song J, Wang J, Boehman AL (2006) Combust Flame 146:73–84

    Article  CAS  Google Scholar 

  31. Stanmore BR, Brilhac JF, Gilot P (2001) Carbon 39:2247–2268

    Article  CAS  Google Scholar 

  32. Harlé V, Pitois C, Rocher L, Garcia F (2008) SAE paper: 2008-01-0331

  33. Lee KO, Song J (2007) SAE paper: 2007-01-1943

  34. Høj M, Linde K, Hansen TK, Brorson M, Jensen AD, Grunwaldt J-D (2011) Appl Catal A 397:201–208

    Article  Google Scholar 

  35. Mädler L, Kammler H, Mueller R, Pratsinis S (2002) J Aerosol Sci 33:369–389

    Article  Google Scholar 

  36. Ernst FO, Büchel R, Strobel R, Pratsinis SE (2008) Chem Mater 20:2117–2123

    Article  CAS  Google Scholar 

  37. Lide DR (ed) (1997) Handbook of chemistry and physics. CRC Press, USA

    Google Scholar 

  38. Scherrer P (1918) Nachr Ges Wiss Göttingen. Math-Phys 2:98–100

    Google Scholar 

  39. Feng X, Sayle DC, Wang ZL, Paras MS, Santora B, Sutorik AC, Sayle TX, Yang Y, Ding Y, Wang X, Her YS (2006) Science 312:1504–1508

    Article  CAS  Google Scholar 

  40. Stark WJ, Mädler L, Maciejewski M, Pratsinis SE, Baiker A (2003) Chem Commun 5:588–589

    Article  Google Scholar 

  41. Machida M, Murata Y, Kishikawa K, Zhang D, Ikeue K (2008) Chem Mater 20:4489–4494

    Article  CAS  Google Scholar 

  42. Saab E, Aouad S, Abi-Aad E, Bokova M, Zhilinskaya E, Aboukaïs A (2007) Kin Catal 48:841–846

    Article  CAS  Google Scholar 

  43. Shimizu K, Kawachi H, Satsuma A (2010) Appl Catal B 96:169–175

    Article  CAS  Google Scholar 

  44. Ikeue K, Kobayashi S, Machida M (2009) J Ceram Soc Jpn 117:1153–1157

    Article  CAS  Google Scholar 

  45. Aouad S, Abi-Aad E, Aboukais A (2009) Appl Catal B 88:249–256

    Article  CAS  Google Scholar 

  46. Issa M, Mahzoul H, Brillard A, Brilhac JF (2009) Chem Eng Technol 32:1859–1865

    Article  CAS  Google Scholar 

  47. Kockrick E, Schrage C, Grigas A, Geiger D, Kaskel S (2008) J Solid State Chem 181:1614–1620

    Article  CAS  Google Scholar 

  48. Zhang Z, Han D, Wei S, Zhang Y (2010) J Catal 276:16–23

    Article  CAS  Google Scholar 

  49. Hansen BB, Jensen AD, Jensen PA (2013) Fuel 106:234–240

    Article  CAS  Google Scholar 

  50. Bokova M, Decarne C, Abi-Aad E, Pryakhin A, Lunin V, Aboukais A (2005) Thermochim Acta 428:165–171

    Article  CAS  Google Scholar 

  51. Li X, Wei S, Zhang Z, Zhang Y, Wang Z, Su Q, Gao X (2011) Catal Today 175:112–116

    Article  CAS  Google Scholar 

  52. Aneggi E, de Leitenburg C, Dolcetti G, Trovarelli A (2007) Top Catal 42:319–322

    Article  Google Scholar 

  53. Lim C-B, Kusaba H, Einaga H, Teraoka Y (2011) Catal Today 175:106–111

    Article  CAS  Google Scholar 

  54. Yamazaki K, Kayama T, Dong F, Shinjoh H (2011) J Catal 282:289–298

    Article  CAS  Google Scholar 

  55. Van Doorn J, Varloud J, Meriaudeau P, Perrichon V, Chevrier M, Gauthier C (1992) Appl Catal B 1:117–127

    Article  Google Scholar 

  56. Hensgen L, Stöwe K (2011) Catal Today 159:100–107

    Article  CAS  Google Scholar 

  57. Muroyama H, Hano S, Matsui T, Eguchi K (2010) Catal Today 153:133–135

    Article  CAS  Google Scholar 

  58. Palmisano P, Russo N, Fino P, Fino D, Badini C (2006) Appl Catal B 69:85–92

    Article  CAS  Google Scholar 

  59. Oliveira CF, Garcia FAC, Araújo DR, Macedo JL, Dias SCL, Dias JA (2012) Appl Catal A 413–141:292–300

    Article  Google Scholar 

  60. Fang P, Luo MF, Lu JQ, Cen SQ, Yan XY, Wang XX (2008) Thermochim Acta 478:45–50

    Article  CAS  Google Scholar 

  61. Wu X, Liu D, Li K, Li J, Weng D (2007) Catal Commun 8:1274–1278

    Article  CAS  Google Scholar 

  62. Bueno-Lopez A, Krishna K, Makkee M, Moulijn J (2005) J Catal 230:237–248

    Article  CAS  Google Scholar 

  63. Su DS, Müller J-O, Jentoft RE, Rothe D, Jacob E, Schlögl R (2004) Top Catal 30(31):241–245

    Article  Google Scholar 

  64. Jansma H, Fino D, Uitz R, Makkee M (2012) Ind Eng Chem Res 51:7559–7564

    Article  CAS  Google Scholar 

  65. Boehman AL, Song J, Alam M (2005) Energy Fuels 19:1857–1864

    Article  CAS  Google Scholar 

  66. Higgins KJ, Jung H, Kittelson DB, Roberts JT, Zachariah MR (2003) Environ Sci Technol 37:1949–1954

    Article  CAS  Google Scholar 

  67. Setiabudi A, Makkee M, Moulijn JA (2004) Appl Catal B 50:185–194

    Article  CAS  Google Scholar 

  68. Jung H, Kittelson DB, Zachariah MR (2005) Combust Flame 142:276–288

    Article  CAS  Google Scholar 

  69. Jung H, Kittelson DB, Zachariah MR (2003) SAE paper: 2003-01-3179

  70. Vander Wal RL, Yezerets A, Currier NW, Kim DH, Wang CM (2007) Carbon 45:70–77

    Article  Google Scholar 

  71. Furimsky E (1988) Fuel Process Technol 19:203–210

    Article  CAS  Google Scholar 

  72. Wersborg BL, Fox LK, Howard JB (1975) Combust Flame 24:1–10

    Article  CAS  Google Scholar 

  73. Benfield RE (1992) J Chem Soc. Faraday Trans 88:1107–1110

    Article  CAS  Google Scholar 

  74. Migani A, Vayssilov GN, Bromley ST, Illas F, Neyman KM (2010) Chem Commun 46:5936–5938

    Article  CAS  Google Scholar 

  75. Aneggi E, de Leitenburg C, Llorca J, Trovarelli A (2012) Catal Today 197:119–126

    Article  CAS  Google Scholar 

  76. Désaunay T, Bonura G, Chiodo V, Freni S, Couzinié J-P, Bourgon J, Ringuedé A, Labat F, Adamo C, Cassir M (2013) J Catal 297:193–201

    Article  Google Scholar 

  77. Wu Z, Li M, Overbury SH (2012) J Catal 285:61–73

    Article  CAS  Google Scholar 

  78. Aneggi E, Wiater D, de Leitenburg C, Llorca J, Trovarelli A (2014) ACS Catal 4:172–181

    Article  CAS  Google Scholar 

  79. Simonsen S, Dahl S, Johnson E, Helveg S (2008) J Catal 255:1–5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from The Danish Council for Strategic Research (DSF) is gratefully acknowledged (Grant no. 2106-08-0039). Martin Høj and Brian Brun Hansen are gratefully acknowledged for aid in connection with the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anker D. Jensen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, J.M., Deiana, D., Grunwaldt, JD. et al. Ceria Prepared by Flame Spray Pyrolysis as an Efficient Catalyst for Oxidation of Diesel Soot. Catal Lett 144, 1661–1666 (2014). https://doi.org/10.1007/s10562-014-1319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1319-0

Keywords

Navigation