Skip to main content

Advertisement

Log in

The CCL2 chemokine is a negative regulator of autophagy and necrosis in luminal B breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Luminal A and B breast cancers are the most prevalent forms of breast cancer diagnosed in women. Compared to luminal A breast cancer patients, patients with luminal B breast cancers experience increased disease recurrence and lower overall survival. The mechanisms that regulate the luminal B subtype remain poorly understood. The chemokine CCL2 is overexpressed in breast cancer, correlating with poor patient prognosis. The purpose of this study was to determine the role of CCL2 expression in luminal B breast cancer cells. Breast tissues, MMTV-PyVmT and MMTV-Neu transgenic mammary tumors forming luminal B-like lesions, were immunostained for CCL2 expression. To determine the role of CCL2 in breast cancer cells, CCL2 gene expression was silenced in mammary tumor tissues and cells using TAT cell-penetrating peptides non-covalently cross linked to siRNAs (Ca-TAT/siRNA). CCL2 expression was examined by ELISA and flow cytometry. Cell growth and survival were analyzed by flow cytometry, immunocytochemistry, and fluorescence microscopy. CCL2 expression was significantly increased in luminal B breast tumors, MMTV- PyVmT and MMTV-Neu mammary tumors, compared or normal breast tissue or luminal A breast tumors. Ca-TAT delivery of CCL2 siRNAs significantly reduced CCL2 expression in PyVmT mammary tumors, and decreased cell proliferation and survival. CCL2 gene silencing in PyVmT carcinoma cells or BT474 luminal B breast cancer cells decreased cell growth and viability associated with increased necrosis and autophagy. CCL2 expression is overexpressed in luminal B breast cancer cells and is important for regulating cell growth and survival by inhibiting necrosis and autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ca-TAT:

Calcium crosslinked TAT

CCL2:

Chemokine (C–C motif) ligand 2

siRNA:

Small interfering RNA

MMTV:

Mouse mammary tumor virus

PyVmT:

Polyoma virus middle T

HMGB1:

High mobility group box 1

LC3B:

Light chain 3B

TNF-a:

Tumor necrosis alpha

TRAIL:

TNF-related apoptosis inducing ligand

RIPK:

Receptor interacting protein kinase

FBS:

Fetal bovine serum

BSA:

Bovine serum albumin

NBF:

Neutral formalin buffer

SEM:

Standard error of the mean

ANOVA:

Analysis of variance

References

  1. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi:10.1073/pnas.191367098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, Perou CM, Ellis MJ, Nielsen TO (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101(10):736–750. doi:10.1093/jnci/djp082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Zong Y, Zhu L, Wu J, Chen X, Huang O, Fei X, He J, Chen W, Li Y, Shen K (2014) Progesterone receptor status and Ki-67 index may predict early relapse in luminal B/HER2 negative breast cancer patients: a retrospective study. PLoS One 9(8):e95629. doi:10.1371/journal.pone.0095629

    Article  PubMed Central  PubMed  Google Scholar 

  4. Yanagawa M, Ikemot K, Kawauchi S, Furuya T, Yamamoto S, Oka M, Oga A, Nagashima Y, Sasaki K (2012) Luminal A and luminal B (HER2 negative) subtypes of breast cancer consist of a mixture of tumors with different genotype. BMC Res Notes 5:376. doi:10.1186/1756-0500-5-376

    Article  PubMed Central  PubMed  Google Scholar 

  5. Tran B, Bedard PL (2011) Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res 13(6):221. doi:10.1186/bcr2904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Li M, Ransohoff RM (2009) The roles of chemokine CXCL12 in embryonic and brain tumor angiogenesis. Semin Cancer Biol 19(2):111–115. doi:10.1016/j.semcancer.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  7. Bruserud O, Kittang AO (2009) The chemokine system in experimental and clinical hematology. Curr Top Microbiol Immunol 341:3–12. doi:10.1007/82_2010_18

    Google Scholar 

  8. Hemmerich S, Paavola C, Bloom A, Bhakta S, Freedman R, Grunberger D, Krstenansky J, Lee S, McCarley D, Mulkins M, Wong B, Pease J, Mizoue L, Mirzadegan T, Polsky I, Thompson K, Handel TM, Jarnagin K (1999) Identification of residues in the monocyte chemotactic protein-1 that contact the MCP-1 receptor, CCR2. Biochemistry 38(40):13013–13025

    Article  CAS  PubMed  Google Scholar 

  9. Han KH, Green SR, Tangirala RK, Tanaka S, Quehenberger O (1999) Role of the first extracellular loop in the functional activation of CCR2. The first extracellular loop contains distinct domains necessary for both agonist binding and transmembrane signaling. J Biol Chem 274(45):32055–32062

    Article  CAS  PubMed  Google Scholar 

  10. Monteclaro FS, Charo IF (1996) The amino-terminal extracellular domain of the MCP-1 receptor, but not the RANTES/MIP-1alpha receptor, confers chemokine selectivity. Evidence for a two-step mechanism for MCP-1 receptor activation. J Biol Chem 271(32):19084–19092

    Article  CAS  PubMed  Google Scholar 

  11. Zabel BA, Zuniga L, Ohyama T, Allen SJ, Cichy J, Handel TM, Butcher EC (2006) Chemoattractants, extracellular proteases, and the integrated host defense response. Exp Hematol 34(8):1021–1032

    Article  CAS  PubMed  Google Scholar 

  12. Zimmermann HW, Tacke F (2011) Modification of chemokine pathways and immune cell infiltration as a novel therapeutic approach in liver inflammation and fibrosis. Inflamm Allergy Drug Targets 10(6):509–536

    Article  CAS  PubMed  Google Scholar 

  13. Raman D, Sobolik-Delmaire T, Richmond A (2011) Chemokines in health and disease. Exp Cell Res 317(5):575–589. doi:10.1016/j.yexcr.2011.01.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. De Paepe B, Creus KK, De Bleecker JL (2008) Chemokines in idiopathic inflammatory myopathies. Front Biosci 13:2548–2577

    Article  PubMed  Google Scholar 

  15. Koelink PJ, Overbeek SA, Braber S, de Kruijf P, Folkerts G, Smit MJ, Kraneveld AD (2009) Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol Ther. doi:10.1016/j.pharmthera.2011.06.008

    Google Scholar 

  16. Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissiere F, Laune D, Roques S, Lazennec G (2007) Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res 9(1):R15

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6(8):3282–3289

    CAS  PubMed  Google Scholar 

  18. Saji H, Koike M, Yamori T, Saji S, Seiki M, Matsushima K, Toi M (2001) Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92(5):1085–1091

    Article  CAS  PubMed  Google Scholar 

  19. Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M, Ochiai A (2009) Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 125(6):1276–1284. doi:10.1002/ijc.24378

    Article  CAS  PubMed  Google Scholar 

  20. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. doi:10.1038/nature10138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193(6):727–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Fang WB, Jokar I, Zou A, Lambert D, Dendukuri P, Cheng N (2012) CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J Biol Chem 287(43):36593–36608. doi:10.1074/jbc.M112.365999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fang WB, Jokar I, Chytil A, Moses HL, Abel T, Cheng N (2011) Loss of one Tgfbr2 allele in fibroblasts promotes metastasis in MMTV: polyoma middle T transgenic and transplant mouse models of mammary tumor progression. Clin Exp Metastasis 28(4):351–366. doi:10.1007/s10585-011-9373-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Haringman JJ, Gerlag DM, Smeets TJ, Baeten D, van den Bosch F, Bresnihan B, Breedveld FC, Dinant HJ, Legay F, Gram H, Loetscher P, Schmouder R, Woodworth T, Tak PP (2006) A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum 54(8):2387–2392. doi:10.1002/art.21975

    Article  CAS  PubMed  Google Scholar 

  25. Makley LN, Gestwicki JE (2013) Expanding the number of ‘druggable’ targets: non-enzymes and protein–protein interactions. Chem Biol Drug Des 81(1):22–32. doi:10.1111/cbdd.12066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Liu T, Altman RB (2014) Identifying druggable targets by protein microenvironments matching: application to transcription factors. CPT 3:e93. doi:10.1038/psp.2013.66

    CAS  Google Scholar 

  27. Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272(25):16010–16017

    Article  CAS  PubMed  Google Scholar 

  28. Baoum A, Xie SX, Fakhari A, Berkland C (2009) “Soft” calcium crosslinks enable highly efficient gene transfection using TAT peptide. Pharm Res 26(12):2619–2629. doi:10.1007/s11095-009-9976-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Pickel L, Matsuzuka T, Doi C, Ayuzawa R, Maurya DK, Xie SX, Berkland C, Tamura M (2010) Overexpression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells. Cancer Biol Ther 9(4):277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Prat A, Cheang MC, Martin M, Parker JS, Carrasco E, Caballero R, Tyldesley S, Gelmon K, Bernard PS, Nielsen TO, Perou CM (2013) Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal a breast cancer. J Clin Oncol 31(2):203–209. doi:10.1200/JCO.2012.43.4134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Aleskandarany MA, Green AR, Benhasouna AA, Barros FF, Neal K, Reis-Filho JS, Ellis IO, Rakha EA (2012) Prognostic value of proliferation assay in the luminal, HER2-positive, and triple-negative biologic classes of breast cancer. Breast Cancer Res 14(1):R3. doi:10.1186/bcr3084

    Article  PubMed Central  PubMed  Google Scholar 

  32. Bugge TH, Lund LR, Kombrinck KK, Nielsen BS, Holmback K, Drew AF, Flick MJ, Witte DP, Dano K, Degen JL (1998) Reduced metastasis of Polyoma virus middle T antigen-induced mammary cancer in plasminogen-deficient mice. Oncogene 16(24):3097–3104. doi:10.1038/sj.onc.1201869

    Article  CAS  PubMed  Google Scholar 

  33. Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL (2005) Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24(32):5053–5068. doi:10.1038/sj.onc.1208685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Maglione JE, Moghanaki D, Young LJ, Manner CK, Ellies LG, Joseph SO, Nicholson B, Cardiff RD, MacLeod CL (2001) Transgenic Polyoma middle-T mice model premalignant mammary disease. Cancer Res 61(22):8298–8305

    CAS  PubMed  Google Scholar 

  35. Guy C, Cardiff R, Muller W (1992) Induction of mammary tumors by expression a polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Hembruff SL, Jokar I, Yang L, Cheng N (2010) Loss of transforming growth factor-beta signaling in mammary fibroblasts enhances CCL2 secretion to promote mammary tumor progression through macrophage-dependent and -independent mechanisms. Neoplasia 12(5):425–433

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Graeber TG, Sawyers CL (2005) Cross-species comparisons of cancer signaling. Nat Genet 37(1):7–8. doi:10.1038/ng0105-7

    Article  CAS  PubMed  Google Scholar 

  38. Budhu S, Wolchok J, Merghoub T (2014) The importance of animal models in tumor immunity and immunotherapy. Curr Opin Genet Dev 24:46–51. doi:10.1016/j.gde.2013.11.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD, Cushing RC, Seagroves TN (2012) Hypoxia-inducible factor 1 alpha promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res 14(1):R6. doi:10.1186/bcr3087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Usary J, Zhao W, Darr D, Roberts PJ, Liu M, Balletta L, Karginova O, Jordan J, Combest A, Bridges A, Prat A, Cheang MC, Herschkowitz JI, Rosen JM, Zamboni W, Sharpless NE, Perou CM (2013) Predicting drug responsiveness in human cancers using genetically engineered mice. Clin Cancer Res 19(17):4889–4899. doi:10.1158/1078-0432.CCR-13-0522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Pirnia F, Frese S, Gloor B, Hotz MA, Luethi A, Gugger M, Betticher DC, Borner MM (2006) Ex vivo assessment of chemotherapy-induced apoptosis and associated molecular changes in patient tumor samples. Anticancer Res 26(3A):1765–1772

    CAS  PubMed  Google Scholar 

  42. Guerriero JL, Ditsworth D, Fan Y, Zhao F, Crawford HC, Zong WX (2008) Chemotherapy induces tumor clearance independent of apoptosis. Cancer Res 68(23):9595–9600. doi:10.1158/0008-5472.CAN-08-2452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195. doi:10.1038/nature00858

    Article  CAS  PubMed  Google Scholar 

  44. Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36(12):2503–2518. doi:10.1016/j.biocel.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  45. Kabakov AE, Kudryavtsev VA, Gabai VL (2011) Determination of cell survival or death. Methods Mol Biol 787:231–244. doi:10.1007/978-1-61779-295-3_17

    Article  CAS  PubMed  Google Scholar 

  46. Miller FR (2000) Xenograft models of premalignant breast disease. J Mammary Gland Biol Neoplasia 5(4):379–391

    Article  CAS  PubMed  Google Scholar 

  47. Riaz M, Elstrodt F, Hollestelle A, Dehghan A, Klijn JG, Schutte M (2009) Low-risk susceptibility alleles in 40 human breast cancer cell lines. BMC Cancer 9:236. doi:10.1186/1471-2407-9-236

    Article  PubMed Central  PubMed  Google Scholar 

  48. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527. doi:10.1016/j.ccr.2006.10.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Jonsson G, Staaf J, Olsson E, Heidenblad M, Vallon-Christersson J, Osoegawa K, de Jong P, Oredsson S, Ringner M, Hoglund M, Borg A (2007) High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization. Genes Chromosom Cancer 46(6):543–558. doi:10.1002/gcc.20438

    Article  PubMed  Google Scholar 

  50. Loberg RD, Day LL, Harwood J, Ying C, John LNS, Giles R, Neeley CK, Pienta KJ (2006) CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 8(7):578–586. doi:10.1593/neo.06280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Roca H, Varsos ZS, Pienta KJ (2009) CCL2 is a negative regulator of AMP-activated protein kinase to sustain mTOR complex-1 activation, survivin expression, and cell survival in human prostate cancer PC3 cells. Neoplasia 11(12):1309–1317

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Roca H, Varsos Z, Pienta KJ (2008) CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 283(36):25057–25073. doi:10.1074/jbc.M801073200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147. doi:10.1038/nrm3737

    Article  CAS  PubMed  Google Scholar 

  54. Amaravadi RK, Thompson CB (2007) The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 13(24):7271–7279. doi:10.1158/1078-0432.CCR-07-1595

    Article  CAS  PubMed  Google Scholar 

  55. Carlomagno C, Perrone F, Lauria R, de Laurentiis M, Gallo C, Morabito A, Pettinato G, Panico L, Bellelli T, Apicella A et al (1995) Prognostic significance of necrosis, elastosis, fibrosis and inflammatory cell reaction in operable breast cancer. Oncology 52(4):272–277

    Article  CAS  PubMed  Google Scholar 

  56. Yu L, Yang W, Cai X, Shi D, Fan Y, Lu H (2010) Centrally necrotizing carcinoma of the breast: clinicopathological analysis of 33 cases indicating its basal-like phenotype and poor prognosis. Histopathology 57(2):193–201. doi:10.1111/j.1365-2559.2010.03601.x

    Article  PubMed  Google Scholar 

  57. Tomes L, Emberley E, Niu Y, Troup S, Pastorek J, Strange K, Harris A, Watson PH (2003) Necrosis and hypoxia in invasive breast carcinoma. Breast Cancer Res Treat 81(1):61–69. doi:10.1023/A:1025476722493

    Article  PubMed  Google Scholar 

  58. Rundqvist H, Johnson RS (2013) Tumour oxygenation: implications for breast cancer prognosis. J Intern Med 274(2):105–112. doi:10.1111/joim.12091

    Article  CAS  PubMed  Google Scholar 

  59. Altman BJ, Rathmell JC (2012) Metabolic stress in autophagy and cell death pathways. Cold Spring Harb Perspect Biol 4(9):a008763. doi:10.1101/cshperspect.a008763

    Article  PubMed Central  PubMed  Google Scholar 

  60. Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8):2224–2234

    Article  CAS  PubMed  Google Scholar 

  61. Ahluwalia A, Tarnawski AS (2012) Critical role of hypoxia sensor–HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr Med Chem 19(1):90–97

    Article  CAS  PubMed  Google Scholar 

  62. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, Wang X, He C, Pan H (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4:e838. doi:10.1038/cddis.2013.350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Khurana B, Goyal AK, Budhiraja A, Arora D, Vyas SP (2010) siRNA delivery using nanocarriers - an efficient tool for gene silencing. Curr Gene Ther 10(2):139–155

    Article  CAS  PubMed  Google Scholar 

  64. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25. doi:10.1016/j.addr.2013.11.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450

    CAS  PubMed  Google Scholar 

  66. Thoren PE, Persson D, Isakson P, Goksor M, Onfelt A, Norden B (2003) Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochem Biophys Res Commun 307(1):100–107

    Article  CAS  PubMed  Google Scholar 

  67. Prinetti A, Prioni S, Loberto N, Aureli M, Nocco V, Illuzzi G, Mauri L, Valsecchi M, Chigorno V, Sonnino S (2011) Aberrant glycosphingolipid expression and membrane organization in tumor cells: consequences on tumor-host interactions. Adv Exp Med Biol 705:643–667. doi:10.1007/978-1-4419-7877-6_34

    Article  CAS  PubMed  Google Scholar 

  68. Fulda S (2009) Tumor resistance to apoptosis. Int J Cancer 124(3):511–515. doi:10.1002/ijc.24064

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from: the KUCC Pilot Grants Program, Kansas Bioscience Authority, NIH/NCI (CA127357) and American Cancer Society (RSG-13-182-01-CSM).

Conflict of interest

C. Berkland has a patent (US 20110287547 A1) on Ca-TAT peptides. These studies were not solicited or funded by any pharmaceutical company.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikki Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, W.B., Yao, M., Jokar, I. et al. The CCL2 chemokine is a negative regulator of autophagy and necrosis in luminal B breast cancer cells. Breast Cancer Res Treat 150, 309–320 (2015). https://doi.org/10.1007/s10549-015-3324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3324-4

Keywords

Navigation