Skip to main content
Log in

Secondary NAD+ deficiency in the inherited defect of glutamine synthetase

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD+) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD+ depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD+ depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD+ depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GS:

Glutamine synthetase

NAD+ :

Nicotinamide adenine dinucleotide

PBSC:

Peripheral blood stem cells

References

  • Abramson RD, Barbosa P, Kalumuck K, O’Brien WE (1991) Characterization of the human argininosuccinate lyase gene and analysis of exon skipping. Genomics 10:126–32

    Article  CAS  PubMed  Google Scholar 

  • Bieganowski P, Pace HC, Brenner C (2003) Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J Biol Chem 278:33049–55

    Article  CAS  PubMed  Google Scholar 

  • Boulland JL, Rafiki A, Levy LM, Storm-Mathisen J, Chaudhry FA (2003) Highly differential expression of SN1, a bidirectional glutamine transporter, in astroglia and endothelium in the developing rat brain. Glia 41:260–75

    Article  PubMed  Google Scholar 

  • Bruzzone S, Fruscione F, Morando S, Ferrando T, Poggi A, Garuti A, D’Urso A, Selmo M, Benvenuto F, Cea M, Zoppoli G, Moran E, Soncini D, Ballestrero A, Sordat B, Patrone F, Mostoslavsky R, Uccelli A, Nencioni A (2009) Catastrophic NAD(+) depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE. PLoS One 4

  • Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia–implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13:272–6

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99:769–80

    Article  CAS  PubMed  Google Scholar 

  • Derouiche A, Ohm TG (1994) Glutamine synthetase immunoreactivity in the human hippocampus is lamina-specific. Neurosci Lett 165:179–82

    Article  CAS  PubMed  Google Scholar 

  • Dorner M, Zucol F, Berger C, Byland R, Melroe GT, Bernasconi M, Speck RF, Nadal D (2008) Distinct ex vivo susceptibility of B-cell subsets to epstein-barr virus infection according to differentiation status and tissue origin. J Virol 82:4400–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JCK, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Gill HS, Pfluegl GM, Rotstein SH (2000) Structure-function relationships of glutamine synthetases. Biochim Biophys Acta 1477:122–45

    Article  CAS  PubMed  Google Scholar 

  • Farrow NA, Kanamori K, Ross BD, Parivar F (1990) A N-15-Nmr study of cerebral, hepatic and renal nitrogen-metabolism in hyperammonaemic rats. Biochem J 270:473–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forget PP, van Oosterhout M, Bakker JA, Wermuth B, Vles JS, Spaapen LJ (1999) Partial N-acetyl-glutamate synthetase deficiency masquerading as a valproic acid-induced Reye-like syndrome. Acta Paediatr 88:1409–11

    Article  CAS  PubMed  Google Scholar 

  • Häberle J, Görg B, Rutsch F, Schmidt E, Toutain A, Benoist JF, Gelot A, Suc AL, Höhne W, Schliess F, Häussinger D, Koch HG (2005) Congenital glutamine deficiency with glutamine synthetase mutations. N Engl J Med 353:1926–33

    Article  PubMed  Google Scholar 

  • Häberle J, Görg B, Toutain A, Rutsch F, Benoist JF, Gelot A, Suc AL, Koch HG, Schliess F, Häussinger D (2006a) Inborn error of amino acid synthesis: human glutamine synthetase deficiency. J Inherit Metab Dis 29:352–8

    Article  PubMed  Google Scholar 

  • Häberle J, Görg B, Toutain A, Schliess F, Häussinger D (2006b) Glutamine synthetase deficiency in the human. In: Häussinger D, Kircheis G, Schliess F (eds) Hepatic encephalopathy and nitrogen metabolism. Springer, Dordrecht, pp 336–348

    Chapter  Google Scholar 

  • Häberle J, Shahbeck N, Ibrahim K, Hoffmann GF, Ben-Omran T (2011) Natural course of glutamine synthetase deficiency in a 3 year old patient. Mol Genet Metab 103:89–91

    Article  PubMed  Google Scholar 

  • Häberle J, Shahbeck N, Ibrahim K, Schmitt B, Scheer I, O’Gorman R, Chaudhry FA, Ben-Omran T (2012) Glutamine supplementation in a child with inherited GS deficiency improves the clinical status and partially corrects the peripheral and central amino acid imbalance. Orphanet J Rare Dis 7:48

    Article  PubMed Central  PubMed  Google Scholar 

  • Hara N, Yamada K, Terashima M, Osago H, Shimoyama M, Tsuchiya M (2003) Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency. J Biol Chem 278:10914–21

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Cowburn R (1987) Glutamate neurotoxicity and Alzheimer’s disease. Trends Neurosci 10:406

    Article  Google Scholar 

  • Häussinger D (1990) Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J 267:281–90

    Article  PubMed Central  PubMed  Google Scholar 

  • Häussinger D (1998) Hepatic glutamine transport and metabolism. Adv Enzymol Relat Areas Mol Biol 72:43–86

    PubMed  Google Scholar 

  • Häussinger D, Sies R (1984) In: Häussinger D, Sies R (eds) Glutamine metabolism in mammalian tissues. Springer, Berlin, pp 3–15

    Chapter  Google Scholar 

  • Häussinger D, Laubenberger J, vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W, Hennig J (1994) Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107:1475–80

    Article  PubMed  Google Scholar 

  • He YJ, Hakvoort TBM, Kohler SE, Vermeulen JLM, de Waart DR, de Theije C, ten Have GAM, van Eijk HMH, Kunne C, Labruyere WT, Houten SM, Sokolovic M, Ruijter JM, Deutz NEP, Lamers WH (2010) Glutamine synthetase in muscle is required for glutamine production during fasting and extrahepatic ammonia detoxification. J Biol Chem 285:9516–9524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krajewski WW, Collins R, Holmberg-Schiavone L, Jones TA, Karlberg T, Mowbray SL (2008) Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design. J Mol Biol 375:217–28

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–5

    Article  CAS  PubMed  Google Scholar 

  • Liaw SH, Kuo I, Eisenberg D (1995) Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site. Protein Sci 4:2358–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–75

    CAS  PubMed  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–48

    Article  CAS  PubMed  Google Scholar 

  • Nissen-Meyer LS, Chaudhry FA (2013) Protein kinase C phosphorylates the system N glutamine transporter SN1 (Slc38a3) and regulates its membrane trafficking and degradation. Front Endocrinol (Lausanne) 4:138

    Google Scholar 

  • Spencer RL, Preiss J (1967) Biosynthesis of diphosphopyridine nucleotide. The purification and the properties of diphospyridine nucleotide synthetase from Escherichia coli b. J Biol Chem 242:385–92

    CAS  PubMed  Google Scholar 

  • Tang K, Sham H, Hui E, Kirkland JB (2008) Niacin deficiency causes oxidative stress in rat bone marrow cells but not through decreased NADPH or glutathione status. J Nutr Biochem 19:746–753

    Article  CAS  PubMed  Google Scholar 

  • Tullius SG, Biefer HRC, Li SY, Trachtenberg AJ, Edtinger K, Quante M, Krenzien F, Uehara H, Yang XY, Kissick HT, Kuo WP, Ghiran I, de la Fuente MA, Arredouani MS, Camacho V, Tigges JC, Toxavidis V, El Fatimy R, Smith BD, Vasudevan A, ElKhal A (2014) NAD(+) protects against EAE by regulating CD4(+) T-cell differentiation. Nature Communications 5

  • Tumani H, Shen GQ, Peter JB (1995) Purification and immunocharacterization of human brain glutamine synthetase and its detection in cerebrospinal fluid and serum by a sandwich enzyme immunoassay. J Immunol Methods 188:155–63

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen T, Görg B, Vogl T, Wolf M, Varga G, Toutain A, Paul R, Schliess F, Häussinger D, Häberle J (2008) Glutamine synthetase is essential for proliferation of fetal skin fibroblasts. Arch Biochem Biophys 478:96–102

    Article  CAS  PubMed  Google Scholar 

  • Wu C (1977) Glutamine synthetase. IX. Purification and characterization of the enzyme from sheep spleen. Can J Biochem 55:332–9

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Konno H, Yamamoto T, Ito K, Mizugaki M, Iwasaki Y (1987) Glutamine synthetase of the human brain: purification and characterization. J Neurochem 49:603–9

    Article  CAS  PubMed  Google Scholar 

  • Young AB, Greenamyre JT, Hollingsworth Z, Albin R, D’Amato C, Shoulson I, Penney JB (1988) NMDA receptor losses in putamen from patients with Huntington’s disease. Science 241:981–3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Qatar Foundation and from Hartmann Müller Stiftung (Grant 1492 to JH). Grant sponsors had no influence on study design, interpretation of data or manuscript writing.

Compliance with Ethics Guidelines

Conflict of interest

None.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects. Studies with human material are in accordance with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from the legal guardians of the patient for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Häberle.

Additional information

Communicated by: Jerry Vockley

Dedication

The authors want to dedicate this work to the late Hamad Ajool, the then only known patient with inherited GS deficiency, who was able to give so much to his family and to science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Ibrahim, K., Stucki, M. et al. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase. J Inherit Metab Dis 38, 1075–1083 (2015). https://doi.org/10.1007/s10545-015-9846-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-015-9846-4

Keywords

Navigation