Skip to main content

Advertisement

Log in

Piezoelectric generator based on torsional modes for power harvesting from angular vibrations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Torsional vibration of a circular piezoelectric shell of polarized ceramics mounted on a rotationally vibrating base is analyzed. The shell is properly electroded and connected to a circuit such that an electric output is generated. The structure analyzed represents a piezoelectric generator for converting mechanical energy from angular vibrations to electrical energy. Analytical expressions and numerical results for the output voltage, current, power, efficiency and power density are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim S, Clark W W, Wang Q M. Piezoelectric energy harvesting with a clamped circular plate: analysis[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10):847–854.

    Article  Google Scholar 

  2. Yoon H S, Washington G, Danak A. Modeling, optimization, and design of efficient initially curved piezoceramic unimorphs for energy harvesting applications[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10):877–888.

    Article  Google Scholar 

  3. Ng T H, Liao W H. Sensitivity analysis and energy harvesting for self-powered piezoelectric sensor[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10):785–797.

    Article  Google Scholar 

  4. Mateu L, Moll F. Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10):835–845.

    Article  Google Scholar 

  5. Ha S K. Analysis of the asymmetric triple-layered piezoelectric bimorph using equivalent circuit models[J]. J Acoust Soc Am, 2001, 110(2):856–864.

    Article  Google Scholar 

  6. Sodano H A, Park G, Inman D J. Estimation of electric charge output for piezoelectric energy harvesting[J]. Strain, 2004, 40(2):49–58.

    Article  Google Scholar 

  7. Roundy S, Wright P K. A piezoelectric vibration based generator for wireless electronics[J]. Smart Materials and Structures, 2004, 13(5):1131–1142.

    Article  Google Scholar 

  8. Jiang S N, Li X F, Guo S H, Hu Y T, Yang J S, Jiang Q. Performance of a piezoelectric bimorph for scavenging vibration energy[J]. Smart Materials and Structures, 2005, 14(4):769–774.

    Article  Google Scholar 

  9. Lefeuvre E, Badel A, Richard C, et al. Piezoelectric energy harvesting device optimization by synchronous electric charge extraction[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10):865–875.

    Article  Google Scholar 

  10. Hu Y T, Hu H P, Yang J S, et al. A low frequency piezoelectric power harvester using a spiralshaped bimorph[J]. Sciences in China, Ser G, 2006, 49(6):649–659.

    Article  Google Scholar 

  11. Yang J S, Zhou H G, Hu Y T, et al. Performance of a piezoelectric harvester in thickness-stretch mode of a plate[J]. IEEE Trans on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(10):1872–1876.

    Article  Google Scholar 

  12. Hu Y T, Xue H, Yang J S, et al. Nonlinear behavior of a piezoelectric power harvester near resonance[J]. IEEE Trans on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(7):1387–1391.

    Article  Google Scholar 

  13. Toikawa Y, Adachi K, Aoyagi M, et al. Some constructions and characteristics of rod-type piezoelectric ultrasonic motors using longitudinal and torsional vibrations[J]. IEEE Trans on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39(5):600–608.

    Article  Google Scholar 

  14. Lin S Y. Sandwiched piezoelectric ultrasonic transducers of longitudinal-torsional compound vibration modes[J]. IEEE Trans on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44(6):1189–1197.

    Article  Google Scholar 

  15. Yang J S, Fang H Y, Jiang Q. A vibrating piezoelectric ceramic shell as a rotation sensor[J]. Smart Materials and Structures, 2000, 9(4):445–451.

    Article  Google Scholar 

  16. Tiersten H F. Linear piezoelectric plate vibrations[M]. New York: Plenum, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Yuan-tai  (胡元太).

Additional information

Communicated by WANG Biao

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Zg., Hu, Yt. & Yang, Js. Piezoelectric generator based on torsional modes for power harvesting from angular vibrations. Appl Math Mech 28, 779–784 (2007). https://doi.org/10.1007/s10483-007-0608-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-007-0608-y

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation