Bailey, M. D., Shechter, S. M., & Schaefer, A. J. (2006). SPAR: stochastic programming with adversarial recourse.

*Operations Research Letters*,

*34*(3), 307–315.

CrossRef
Bayrak, H., & Bailey, M. (2008). Shortest path network interdiction with asymmetric information.

*Networks*,

*52*(3), 133–140.

CrossRef
Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2006).

*Nonlinear programming: theory and algorithms* (3rd ed.). Hoboken: Wiley.

CrossRef
Brown, S. S. (1980). Optimal search for a moving target in discrete time and space.

*Operations Research*,

*28*(6), 1275–1289.

CrossRef
Brown, G., Carlyle, M., Salmerón, J., & Wood, R. K. (2006). Defending critical infrastructure.

*Interfaces*,

*36*(6), 530–544.

CrossRef
Brown, G. G., Harney, R. C., Skroch, E. M., & Wood, R. K. (2009). Interdicting a nuclear-weapons project.

*Operations Research*,

*57*(4), 866–877.

CrossRef
Cormican, K. J. (1995). *Computational methods for deterministic and stochastic network interdiction problems*. Master’s Thesis, US Naval Postgraduate School, Monterey, CA.

Cormican, K. J., Morton, D. P., & Wood, R. K. (1998). Stochastic network interdiction.

*Operations Research*,

*46*(2), 184–197.

CrossRef
Dempe, S. (2002). *Foundations of bilevel programming*. Dordrecht: Kluwer Academic.

Ford, L. R., & Fulkerson, D. R. (1956). Maximal flow through a network.

*Canadian Journal of Mathematics*,

*8*, 399–404.

CrossRef
Ford, L. R., & Fulkerson, D. R. (1955). *A simple algorithm for finding maximal network flows and an application to the Hitchcock problem*. Project rand research memorandum, RM-1604, Santa Monica, CA.

Fulkerson, D. R., & Harding, G. C. (1977). Maximizing the minimum source-sink path subject to a budget constraint.

*Mathematical Programming*,

*13*(1), 116–118.

CrossRef
Golden, B. (1978). A problem in network interdiction.

*Naval Research Logistics Quarterly*,

*25*(4), 711–713.

CrossRef
Hausken, K. (2011). Strategic defense and attack of series systems when agents move sequentially.

*IIE Transactions*,

*43*(7), 483–504.

CrossRef
Held, H., Hemmecke, R., & Woodruff, D. L. (2005). A decomposition algorithm applied to planning the interdiction of stochastic networks.

*Naval Research Logistics*,

*52*(4), 321–328.

CrossRef
Hemmecke, R., Schultz, R., & Woodruff, D. L. (2003). Interdicting stochastic networks with binary effort. In D. L. Woodruff (Ed.),

*Network interdiction and stochastic integer programming* (pp. 69–84). Norwell: Kluwer Academic.

CrossRef
Israeli, E., & Wood, R. K. (2002). Shortest-path network interdiction.

*Networks*,

*40*(2), 97–111.

CrossRef
Koopman, B. O. (1979). Search and its optimization.

*The American Mathematical Monthly*,

*86*, 527–540.

CrossRef
Lim, C., & Smith, J. C. (2008). Algorithms for network interdiction and fortification games. In A. Chinchuluun, P. M. Pardalos, A. Migdalas, & L. Pitsoulis (Eds.), *Pareto optimality, game theory and equilibria* (pp. 609–644). New York: Springer.

Lim, C., & Smith, J. C. (2007). Algorithms for discrete and continuous multicommodity flow network interdiction problems.

*IIE Transactions*,

*39*(1), 15–26.

CrossRef
Lunday, B. J. (2010). *Resource allocation on networks: nested event tree optimization, network interdiction, and game theoretic methods*. Doctoral Dissertation, Virginia Tech, Blacksburg, VA.

Lunday, B. J., & Sherali, H. D. (2011a). A dynamic network interdiction problem. *Informatica*, *21*(4), 553–574.

Lunday, B. J., & Sherali, H. D. (2011b). *Network flow interdiction models and algorithms with resource synergy considerations*. Manuscript, Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA.

Meijers, E. (2005). Polycentric urban regions and the quest for synergy: is a network of cities more than the sum of the parts?

*Urban Studies*,

*42*(4), 765–781.

CrossRef
Morton, D. P., Pan, F., & Saeger, K. J. (2007). Models for nuclear smuggling interdiction.

*IIE Transactions*,

*39*(1), 3–14.

CrossRef
Napier, R. W., & Gershenfeld, M. K. (1993). *Groups: theory and experiences*. Boston: Houghton Mifflin Company.

Nagurney, A., & Woolley, T. (2010). Environmental and cost synergy in supply chain network integration in mergers and acquisitions. In M. Ehrgott, B. Naujoks, T. Stewart, & J. Wallenius (Eds.) *Lecture notes in economics and mathematical systems: Vol.* *634*. *Multiple criteria decision making for sustainable energy and transportation systems. Proceedings of the 19th international conference on multiple criteria decision making* (pp. 51–78). Berlin: Springer.

Nehme, M. V. (2009). *Two-person games for stochastic network interdiction: models, methods, and complexities*. Doctoral Dissertation, University of Texas, Austin, TX.

Pan, F., Charlton, W. S., & Morton, D. P. (2003). A stochastic program for interdicting smuggled nuclear material. In D. L. Woodruff (Ed.),

*Network interdiction and stochastic integer programming* (pp. 1–19). Norwell: Kluwer Academic.

CrossRef
Royset, J. O., & Wood, R. K. (2007). Solving the bi-objective maximum-flow network-interdiction problem.

*INFORMS Journal on Computing*,

*19*(2), 175–184.

CrossRef
Sherali, H. D., & Lunday, B. J. (2010). Equitable apportionment of railcars within a pooling agreement for shipping automobiles.

*Transportation Research. Part E*,

*47*, 263–283.

CrossRef
Unsal, O. (2010). *Two-person zero-sum network-interdiction game with multiple inspector types*. Master’s Thesis, Naval Postgraduate School, Monterey, CA.

von Eye, A., Schuster, C., & Rogers, W. M. (1998). Modelling synergy using manifest categorical variables.

*International Journal of Behavioral Development*,

*22*(3), 537–557.

CrossRef
Washburn, A., & Wood, R. K. (1995). Two-person zero-sum games for network interdiction.

*Operations Research*,

*43*(2), 243–251.

CrossRef
Wood, R. K. (1993). Deterministic network interdiction.

*Mathematical and Computer Modelling*,

*17*(2), 1–18.

CrossRef