Skip to main content
Log in

Aeppli–Bott-Chern cohomology and Deligne cohomology from a viewpoint of Harvey–Lawson’s spark complex

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

By comparing Deligne complex and Aeppli–Bott-Chern complex, we construct a differential cohomology \(\widehat{H}^*(X, *, *)\) that plays the role of Harvey–Lawson spark group \(\widehat{H}^*(X, *)\), and a cohomology \(H^*_{\mathrm{ABC}}(X; \mathbb Z(*, *))\) that plays the role of Deligne cohomology \(H^*_{\mathcal {D}}(X; \mathbb Z(*))\) for every complex manifold X. They fit in the short exact sequence

$$\begin{aligned} 0\rightarrow H^{k+1}_{\mathrm{ABC}}(X; \mathbb Z(p, q)) \rightarrow \widehat{H}^k(X, p, q) \overset{\delta _1}{\rightarrow } Z^{k+1}_I(X, p, q) \rightarrow 0 \end{aligned}$$

and \(\widehat{H}^{\bullet }(X, \bullet , \bullet )\) possess ring structure and refined Chern classes, acted by the complex conjugation, and if some primitive cohomology groups of X vanish, there is a Lefschetz isomorphism. Furthermore, the ring structure of \(H^{\bullet }_{\mathrm{ABC}}(X; \mathbb Z(\bullet , \bullet ))\) inherited from \(\widehat{H}^{\bullet }(X, \bullet , \bullet )\) is compatible with the one of the analytic Deligne cohomology \(H^{\bullet }(X; \mathbb Z(\bullet ))\). We compute \(\widehat{H}^*(X, *, *)\) for X the Iwasawa manifold and its small deformations and get a refinement of the classification given by Nakamura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angella, D.: The cohomologies of the Iwasawa manifold and of its small deformations. J. Geom. Anal. 23, 1355–1378 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. B\(\ddot{a}\)r, C., Becker, C.: Differential characters, lecture notes in mathematics, vol. 2112. Springer, New York (2014)

  3. Bunke, U.: Differential cohomology (2012). arXiv:1208.3961

  4. Bunke, U., Kreck, M., Schick, T.: A geometric description of differential cohomology. Ann. Math. Blaise Pascal 17(1), 1–16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bunke, U., Nikolaus, T., Völkl, M.: Differential cohomology theories as sheaves of spectra (2014). arXiv:1311.3188

  6. Bunke, U., Schick, T.: Differential K-theory: a survey. Global Differ. Geom., Springer Proc. Math., vol. 17, pp. 303–357. Springer, Heidelberg (2012)

  7. Cenkl, B., Porter, R.: Cohomology of Nilmanifolds, algebraic topology-rational homotopy. In: Felix, Y. (ed.) Proceedings of a Conference held in Louvain-la-Neuve, LNM1318, pp. 73–86. Springer, New York (1988)

  8. Cheeger, J., Simons, J.: Differential character and geometric invariants, Geometry and Topology, LNM1167. Springer, New York (1985)

    MATH  Google Scholar 

  9. Freed, D.S.: Dirac charge quantization and generalized differential cohomology. Surv. Differ. Geom. VII, 129–194 (2000)

  10. Hao, N.: Ph.D. Thesis, D-Bar spark sheory and Deligne cohomology, Stony Brook University (2007)

  11. Harvey, R., Lawson, B., Zweck, J.: The de Rham-Federer theory of differential characters and character duality. Am. J. Math. 125, 791–847 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harvey, R., Lawson, B.: D-bar sparks. Proc. LMS 3(97), 1–30 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Harvey, R., Lawson, B.: From sparks to grundles-differential characters. Comm. Anal. Geom. 1(14), 25–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hopkins, M.J., Singer, I.M.: Quadratic functions in geometry, topology, and M-theory. JDG 70(3), 329–452 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Harvey, F.R., Zweck, J.: Divisors and Euler sparks of atomic sections. Indiana Univ. Math. J. 50, 243–298 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lambe, L.A., Priddy, S.B.: Cohomology of nilmanifolds and torsion-free, nilpotent groups. Trans. AMS 273(1), 39–55 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nakamura, I.: Complex parallelisable manifolds and their small deformations. JDG 10(1), 85–112 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. Math. 59(3), 531–538 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schweitzer, M.: Autour de la cohomologie de Bott-Chern (2007). arXiv:0709.3528

  20. Zweck, J.: Stiefel-Whitney sparks. Houst. J. Math. 27(2), 325–351 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks Siye Wu for his interest in this work and Taiwan National Center for Theoretical Sciences (Hsinchu) for providing a nice working environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Haur Teh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teh, JH. Aeppli–Bott-Chern cohomology and Deligne cohomology from a viewpoint of Harvey–Lawson’s spark complex. Ann Glob Anal Geom 50, 165–186 (2016). https://doi.org/10.1007/s10455-016-9506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-016-9506-4

Keywords

Mathematics Subject Classification

Navigation