Skip to main content
Log in

Twisted Dirac operators and generalized gradients

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

On Riemannian or spin manifolds, there are geometric first order differential operators called generalized gradients. In this article, we prove that the Dirac operator twisted with an associated bundle is a linear combination of some generalized gradients. This observation allows us to find all the homomorphism type Weitzenböck formulas. We also give some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Baum H., Friedrich Th., Grunewald R., Kath I.: Twistors and Killing spinors on Riemannian manifolds Teubner-Texte zur Mathematik, vol. 124.Teubner-Verlag (1991)

  2. Besse, A.: Einstein manifolds. Springer-Verlag, Berlin, Heidelberg (1987)

    Book  MATH  Google Scholar 

  3. Böhm, C., Wilking, B.: Manifolds with positive curvature operators are space forms. Ann. Math. 2(167), 1079–1097 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourguignon J.P.: The “magic” of Weitzenböck formulas, variational methods (Paris, 1988), Progr. Nonlinear Differential Equations Appl., vol. 4. Birkhäuser Boston, Boston, pp. 251-271 (1990)

  5. Branson, T.: Harmonic analysis in vector bundles associated to the rotation and spin groups. J. Funct. Anal. 106, 314–328 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Branson, T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151, 334–383 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Branson, T.: Second order conformal covariants. Proc. Am. Math. Soc. 126(4), 1031–1042 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eelbode, D., Šmid, D.: Factorization of Laplace operators on higher spin representations. Complex Anal. Oper. Theory 6(5), 1011–1023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fegan, H.D.: Conformally invariant first order differential operators. Q. J. Math. Oxford 27, 371–378 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gauduchon, P.: Structures de Weyl et théorèmes d’annulation sur une variété conforme autoduale. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(18), 563–629 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Gallot, S., Meyer, D.: Opérateur de courbure et laplacien des formes différentielles d’une variété Rimannienne. J. Math. Pures Appl. 9(54), 259–284 (1975)

    MathSciNet  MATH  Google Scholar 

  12. Homma, Y.: Bochner-Weitzenböck formula and curvature actions on Riemannian manifolds. Trans. Am. Math. Soc. 358, 87–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Homma, Y.: Estimating the eigenvalues on quaternionic Kähler manifolds. Internat. J. Math. 17(6), 665–691 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, J.S., Pandžić, P.: Dirac operators in representation theory, Mathematics: theory & applications. Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  15. Kumar, S.: Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture. Invent. Math. 93, 117–130 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pilca, M.: A note on the conformal invariance of G-generalized gradients. Internat. J. Math. 22(11), 1561–1583 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Semmelmann, U.: Conformal killing forms on Riemannian manifolds. Math. Z. 245, 503–527 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Semmelmann, U.: Killing forms on \({{\rm G}}_2\)- and \({{\rm Spin}}_7\)-manifolds. J. Geom. Phys. 56(9), 1752–1766 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Semmelmann, U., Weingart, G.: Vanishing theorems for quaternionic Kähler manifolds. J. Reine Angew. Math. 544, 111–132 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Semmelmann, U., Weingart, G.: The Weitzenböck machine. Compos. Math. 146(2), 507–540 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stein, E.M., Weiss, G.: Generalization of the Cauchy-Riemann equations and representation of the rotation group. Am. J. Math. 90, 163–196 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, M.Y.: Preserving parallel spinors under metric deformations. Indiana Univ. Math. J. 40(3), 815–844 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This article was almost completed while the author stayed at Stuttgart University as a visiting researcher during his one year sabbatical. Thanks to all staffs of the institute of Geometry and Topology in Stuttgart University. Especially, the author is grateful to U. Semmelmann for his hospitality, fruitful discussions about spin geometry, and helpful comments to this article. The author also thanks D. Eelbode for a useful discussion about the twisted Dirac operator. This work was partially supported in part by JSPS KAKENHI Grant Number 15K04858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Homma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homma, Y. Twisted Dirac operators and generalized gradients. Ann Glob Anal Geom 50, 101–127 (2016). https://doi.org/10.1007/s10455-016-9503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-016-9503-7

Keywords

Mathematics Subject Classification

Navigation