Skip to main content
Log in

An exotic zoo of diffeomorphism groups on \(\mathbb {R}^n\)

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let \(C^{[M]}\) be a (local) Denjoy–Carleman class of Beurling or Roumieu type, where the weight sequence \(M=(M_k)\) is log-convex and has moderate growth. We prove that the groups \({\mathrm{Diff }}\mathcal {B}^{[M]}(\mathbb {R}^n)\), \({\mathrm{Diff }}W^{[M],p}(\mathbb {R}^n)\), \({\mathrm{Diff }}{\mathcal {S}}{}_{[L]}^{[M]}(\mathbb {R}^n)\), and \({\mathrm{Diff }}\mathcal {D}^{[M]}(\mathbb {R}^n)\) of \(C^{[M]}\)-diffeomorphisms on \(\mathbb {R}^n\) which differ from the identity by a mapping in \(\mathcal {B}^{[M]}\) (global Denjoy–Carleman), \(W^{[M],p}\) (Sobolev–Denjoy–Carleman), \({\mathcal {S}}{}_{[L]}^{[M]}\) (Gelfand–Shilov), or \(\mathcal {D}^{[M]}\) (Denjoy–Carleman with compact support) are \(C^{[M]}\)-regular Lie groups. As an application, we use the \(R\)-transform to show that the Hunter–Saxton PDE on the real line is well posed in any of the classes \(W^{[M],1}\), \({\mathcal {S}}{}_{[L]}^{[M]}\), and \(\mathcal {D}^{[M]}\). Here, we find some surprising groups with continuous left translations and \(C^{[M]}\) right translations (called half-Lie groups), which, however, also admit \(R\)-transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, M., Bruveris, M., Marsland, S., Michor, P.W.: Constructing reparametrization invariant metrics on spaces of plane curves. Differ. Geom. Appl. (2014). doi:10.1016/j.difgeo.2014.04.008

  2. Bauer, M., Bruveris, M., Michor, P.W.: The homogeneous Sobolev metric of order one on diffeomorphism groups on the real line. J. Nonlinear Sci. (2014). doi:10.1007/s00332-014-9204-y

  3. Bauer, M., Bruveris, M., Michor, P.W.: \({R}\)-transforms for Sobolev \({H^2}\)-metrics on spaces of plane curves. Geom. Imaging Comput. 1, 1–56 (2014)

    Article  Google Scholar 

  4. Bierstone, E., Milman, P.D.: Resolution of singularities in Denjoy–Carleman classes. Sel. Math. (N.S.) 10(1), 1–28 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Results Math. 17(3–4), 206–237 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Glöckner, H.: \(Diff(R^n)\) as a Milnor-Lie group. Math. Nachr. 278(9), 1025–1032 (2005)

  7. Komatsu, H.: Ultradistributions. I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20, 25–105 (1973)

    MATH  MathSciNet  Google Scholar 

  8. Komatsu, H.: An analogue of the Cauchy–Kowalevsky theorem for ultradifferentiable functions and a division theorem for ultradistributions as its dual. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26(2), 239–254 (1979)

    MATH  MathSciNet  Google Scholar 

  9. Komatsu, H.: Ultradifferentiability of solutions of ordinary differential equations. Proc. Jpn. Acad. Ser. A Math. Sci. 56(4), 137–142 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kriegl, A., Michor, P.W.: The convenient setting for real analytic mappings. Acta Math. 165(1–2), 105–159 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997)

  12. Kriegl, A., Michor, P.W.: Regular infinite-dimensional Lie groups. J. Lie Theory 7(1), 61–99 (1997)

    MATH  MathSciNet  Google Scholar 

  13. Kriegl, A., Michor, P.W., Rainer, A.: The convenient setting for non-quasianalytic Denjoy–Carleman differentiable mappings. J. Funct. Anal. 256, 3510–3544 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kriegl, A., Michor, P.W., Rainer, A.: The convenient setting for Denjoy–Carleman differentiable mappings of Beurling and Roumieu type. (2011). arXiv:1111.1819

  15. Kriegl, A., Michor, P.W., Rainer, A.: The convenient setting for quasianalytic Denjoy–Carleman differentiable mappings. J. Funct. Anal. 261, 1799–1834 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kriegl, A., Michor, P.W., Rainer, A.: The exponential law for exotic spaces of test functions and diffeomorphism groups (2014 in preparation)

  17. Michor, P.W.: Topics in Differential Geometry. Graduate Studies in Mathematics, vol. 93. American Mathematical Society, Providence (2008)

  18. Michor, P.W., Mumford, D.: A zoo of diffeomorphism groups on \(\mathbb{R}^n\). Ann. Global Anal. Geom. 44(4), 529–540 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Neus, H.: Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen. Manuscr. Math. 25(2), 135–145 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  20. Petzsche, H.-J.: On E. Borel’s theorem. Math. Ann. 282(2), 299–313 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rainer, A., Schindl, G.: Composition in ultradifferentiable classes. Studia Math. (2015). arXiv:1210.5102

  22. Rainer, A., Schindl, G.: Equivalence of stability properties for ultradifferentiable function classes. (2014). arXiv:1407.6673

  23. Retakh, V.: Subspaces of a countable inductive limit. Sov. Math. Dokl. 11, 1384–1386 (1970)

    MATH  Google Scholar 

  24. Schindl, G.: Exponential laws for classes of Denjoy–Carleman differentiable mappings. PhD thesis (2014)

  25. Schwartz, L.: Théorie des distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris (1966)

  26. Walter, B.: Weighted diffeomorphism groups of Banach spaces and weighted mapping groups. Diss. Math. (Rozprawy Mat.) 484, 128 (2012)

    Google Scholar 

  27. Yamanaka, T.: Inverse map theorem in the ultra-\(F\)-differentiable class. Proc. Jpn. Acad. Ser. A Math. Sci. 65(7), 199–202 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yamanaka, T.: On ODEs in the ultradifferentiable class. Nonlinear Anal. 17(7), 599–611 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Michor.

Additional information

AK was supported by FWF-Project P 23028-N13; AR by FWF-Projects P 22218-N13 and P 26735-N25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kriegl, A., Michor, P.W. & Rainer, A. An exotic zoo of diffeomorphism groups on \(\mathbb {R}^n\) . Ann Glob Anal Geom 47, 179–222 (2015). https://doi.org/10.1007/s10455-014-9442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-014-9442-0

Keywords

Mathematics Subject Classification

Navigation