Skip to main content
Log in

On an isoperimetric problem with a competing non-local term: quantitative results

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

This paper provides a quantitative version of the recent result of Knüpfer and Muratov (Commun Pure Appl Math 66:1129–1162, 2013) concerning the solutions of an extension of the classical isoperimetric problem in which a non-local repulsive term involving Riesz potential is present. In that work, it was shown that in two space dimensions the minimizer of the considered problem is either a ball or does not exist, depending on whether or not the volume constraint lies in an explicit interval around zero, provided that the Riesz kernel decays sufficiently slowly. Here, we give an explicit estimate for the exponents of the Riesz kernel for which the result holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. (eds.): Handbook of mathematical functions. National Bureau of Standards (1964)

  2. Acerbi, E., Fusco, N., Morini, M.: Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322, 515–557 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, New York (2000)

    Google Scholar 

  4. Ambrosio, L., Paolini, E.: Partial regularity for quasi minimizers of perimeter. Ricerche Mat. 48((supplemnto)), 167–186 (1998)

    MathSciNet  Google Scholar 

  5. Bohr, N.: Neutron capture and nuclear constitution. Nature 137, 344–348 (1936)

    Article  MATH  Google Scholar 

  6. Bohr, N., Wheeler, J.A.: The mechanism of nuclear fission. Phys. Rev. 56, 426–450 (1939)

    Article  Google Scholar 

  7. Bonacini, M., Cristoferi, R.: Local and global minimality results for a nonlocal isoperimetric problem on \(\mathbb{R}^N\). SIAM J. Math. Anal. (2014, to appear). Preprint: arXiv:1307.5269

  8. Bonnesen, T.: Über das isoperimetrische Defizit ebener Figuren. Math. Ann. 91, 252–268 (1924)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burago, Y.D., Zalgaller, V.A.: Geometric Inequalities. Springer, New York (1988)

    Book  MATH  Google Scholar 

  10. Choksi, R.: On global minimizers for a variational problem with long-range interactions. Q. Appl. Math. LXX, 517–537 (2012)

    Article  MathSciNet  Google Scholar 

  11. Choksi, R., Peletier, M.A.: Small volume fraction limit of the diblock copolymer problem: II. Diffuse interface functional. SIAM J. Math. Anal. 43, 739–763 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cicalese, M., Spadaro, E.: Droplet minimizers of an isoperimetric problem with long-range interactions. Commun. Pure Appl. Math. 66, 1298–1333 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies (2014). Preprint: arXiv:1403.0516

  14. Figalli, A., Maggi, F.: On the shape of liquid drops and crystals in the small mass regime. Arch. Ration. Mech. Anal. 201, 143–207 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fuglede, B.: Bonnesen’s inequality for the isoperimetric deficiency of closed curves in the plane. Geom. Dedic. 38, 283–300 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gamow, G.: Mass defect curve and nuclear constitution. Proc. R. Soc. Lond. A 126, 632–644 (1930)

    Article  MATH  Google Scholar 

  17. Julin, V.: Isoperimetric problem with a Coulombic repulsive term. Indiana Univ. Math. J. (2014, to appear). Preprint: arXiv:1207.0715

  18. Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing non-local term. I. The planar case. Commun. Pure Appl. Math. 66, 1129–1162 (2013)

    Article  MATH  Google Scholar 

  19. Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing non-local term. II. The general case. Commun. Pure Appl. Math. (2013, published online)

  20. Lu, J., Otto, F.: Nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model. Commun. Pure Appl. Math. (2013, publlished online)

  21. Ohta, T., Kawasaki, K.: Equilibrium morphologies of block copolymer melts. Macromolecules 19, 2621–2632 (1986)

    Article  Google Scholar 

  22. Osserman, R.: Bonnesen-style isoperimetric inequalities. Am. Math. Month. 86, 1–29 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sternberg, P., Topaloglu, I.: A note on the global minimizers of the nonlocal isoperimetric problem in two dimensions. Interf. Free Bound. 13, 155–169 (2010)

    MathSciNet  Google Scholar 

  24. Tamanini, I.: Regularity results for almost minimal oriented hypersurfaces in \(\mathbb{R}^N\). Quad. Dip. Mat. Univ. Lecce 1, 1–92 (1984)

    Google Scholar 

  25. Topaloglu, I.: On a nonlocal isoperimetric problem on the two-sphere. Commun. Pure Appl. Anal. 12, 597–620 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work of C. B. M. was supported, in part, by NSF via Grants DMS-0908279, DMS-1119724 and DMS-1313687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrill B. Muratov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratov, C.B., Zaleski, A. On an isoperimetric problem with a competing non-local term: quantitative results. Ann Glob Anal Geom 47, 63–80 (2015). https://doi.org/10.1007/s10455-014-9435-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-014-9435-z

Keywords

Navigation