Annals of Global Analysis and Geometry

, Volume 34, Issue 2, pp 167–183

On a product formula for the Conley–Zehnder index of symplectic paths and its applications

Authors

  • Maurice De Gosson
    • Departamento De Matemática, Instituto De Matemática E EstatísticaUniversidade de São Paulo
    • Max-Planck-Institut für Mathematik Pf. 7280
  • Serge De Gosson
    • Departamento De Matemática, Instituto De Matemática E EstatísticaUniversidade de São Paulo
    • Departamento De Matemática, Instituto De Matemática E EstatísticaUniversidade de São Paulo
Open AccessOriginal Paper

DOI: 10.1007/s10455-008-9106-z

Cite this article as:
De Gosson, M., De Gosson, S. & Piccione, P. Ann Glob Anal Geom (2008) 34: 167. doi:10.1007/s10455-008-9106-z

Abstract

Using invariance by fixed-endpoints homotopies and a generalized notion of symplectic Cayley transform, we prove a product formula for the Conley–Zehnder index of continuous paths with arbitrary endpoints in the symplectic group. We discuss two applications of the formula, to the metaplectic group and to periodic solutions of Hamiltonian systems.

Keywords

Conley–Zehnder index

Mathematics Subject Classification (2000)

37B3081S1081S30
Download to read the full article text

Copyright information

© Springer Science+Business Media B.V. 2008