Skip to main content
Log in

Thermodynamic characterisation of adsorptive gas/adsorbent systems using the ALIc-model

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The ALIc-Model is a thermodynamically consistent pore filling model which allows microporous and mesoporous adsorptive gas/adsorbent systems to be described and compared directly. Examples of this will be shown on 20 systems. To this end, the standard-molar-free-enthalpy of adsorption is divided into a material-specific concentrate term and a geometric mixing term. At standard pressure and boiling temperature, all the curves of the standard-molar-free-enthalpy of adsorption as a function of the degree of pore filling end at the point of free-enthalpy of adsorption = 0 and at the degree of pore filling = 1. From these characteristic curves, finite molar values for free-enthalpy, enthalpy and entropy of adsorption can be calculated for the adsorbate-concentrate at a negligible degree of pore filling. Alkanes on activated carbons and CO2 on Zeolite 5A are used as demonstrating examples. These values and curves obtained from measurement of adsorption-isotherm-fields enable the interaction of the adsorbate with the adsorbent to be characterized, thus providing additional information for adsorption processes and for the development of adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A(Ξ):

Polanyi potential

m i :

Mass of component i (kg)

MW:

Molecular weight (g/mol)

n i :

Mol of component i (mol)

p i :

Partial pressure of component i (bar)

T :

Temperature, absolute (K)

T B :

Boiling temperature at 1 bar (K)

T S :

Boiling temperature of the vapour pressure curve

V :

Volume under standard conditions (m 3 N )

V ads :

Specific accessible geometric adsorption volume (ml/100 g)

X i  = m i /m s , X i,max = m i,max/m s :

Mass loading of adsorbent s by adsorptive gas i (g/100 g)

ΔH :

Difference in molar-enthalpy (J/mol)

ΔS :

Difference in molar-entropy (J/(mol K)

ΔG :

Difference in molar-free-enthalpy (J/mol)

\( \beta (T) = \frac{1}{{V_{m} (T,p)}} \cdot \left( {\frac{{\partial V_{m} }}{\partial T}} \right)_{p} \) :

Isobaric volume expansion coefficient (1/K)

ρ:

Density (kg/m3)

\( \Upxi = {{X_{i} } \mathord{\left/ {\vphantom {{X_{i} } {X_{i,\hbox{max} } }}} \right. \kern-0pt} {X_{i,\hbox{max} } }} \) :

Degree of pore filling (−)

R :

General molar gas constant (\( 8,314\:\frac{\text{J}}{{{\text{mol}}\,{\text{K}}}} \))

ACC:

Activated carbon fibre cloth (−)

isochor:

Isochoric

std:

Standard

a :

In relation to the substance to be adsorbed

as :

In relation to the adsorbed substance

ads :

In relation to adsorption

abs :

Absolute

B :

In relation to standard boiling pressure of 1 bar

crit :

Critical

con :

In relation to condensation

Conc :

In relation to the concentrate

excess :

Excess

i :

Component i, general

liq :

In relation to the liquid phase

max :

Maximum

mix :

In relation to mixing

mean :

In relation to a mean value

0AA :

In relation to the degree of pore filling 0, adsorbate, adsorbed substance

s :

In relation to the adsorbent

S :

In relation to the liquid–vapour equilibrium

std :

Standard

exp :

Fitting parameter, exponential

h·ex :

Fitting parameter, exponential in terms of H

s·ex :

Fitting parameter, exponential in terms of S

References

  • Berlier, K., Frere, M.: Adsorption of CO2 on activated carbon: simultaneous determination of integral heat and isotherm of adsorption. J. Chem. Eng. Data 41(5), 1144–1148 (1996)

    Google Scholar 

  • Chen, S.G., Yang, R.T.: Theoretical basis for the potential theory adsorption isotherms. The Dubinin-Radushkevich and Dubinin-Astakhov equations. Langmuir 10, 4244 (1994)

    Article  CAS  Google Scholar 

  • Chiang, Y.-C., Chiang, P.-C., Huang, C.-P.: Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39(2001), 523–534 (2001)

    Article  CAS  Google Scholar 

  • Cook, W.H., Basmadjin, D.: Correlation of adsorption equilibria of pure gases on activated carbon. Can. J. Chem. Eng. 42, 146 (1964)

    Article  CAS  Google Scholar 

  • Dubinin, M.M., Astakhov, V.A.: Development of the concepts of volume filling of miropores in the adsorption of gases and vapors by microporous adsorbents (translated from Izvestiya Akademii Nauk: SSSR) Seriya Khimicheskaya No. 1, pp. 5–11 (1971)

  • Dubinin, M.M., Radushkevitch, L.V.: Equation of the characteristic curve of activated charcoal. SSSR. Proc. Acad. Sci. 55, 331 (1947)

    Google Scholar 

  • Dubinin, M.M., Stoeckli, H.F.: Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents. J. Colloid Interface Sci. 75, 34–42 (1980)

    Article  CAS  Google Scholar 

  • Dubinin, M.M., Neimark, A.V., Serpinsky, V.V.: Impact of the adsorbate compressibility on the calculation of the micropore volume. Carbon 31(7), 1015–1019 (1993)

    Article  CAS  Google Scholar 

  • Hori, Y., Kobayashi, R.: Thermodynamic properties of the adsorbate for high-pressure multilayer adsorption. Ind. Eng. Chem. Fundam. 12(1), 26–30 (1973)

    Article  CAS  Google Scholar 

  • Hutson, N.D., Yang, R.T.: Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation. Adsorption 3, 189–195 (1997)

    Article  CAS  Google Scholar 

  • Jaroniec, M., Madey, R., Choma, J., McEnaney, B., Mays, T.J.: Comparison of adsorption methods for characterizing the microporosity of activated carbon. Carbon 27, 77 (1989)

    Article  Google Scholar 

  • Karge, H., Weitkamp, J.: Adsorption and Diffusion (Molecular Sieves). Springer, Berlin (2008)

  • Kimmerle, K., Schippert, E.: Adsorption-Liquid-Isotherms on Activated Carbon Fiber Cloth. Global Guide of Filtration 2011-2013, ISBN 978-3-00-029751-9, pp. 161–169. VDL-Verlag, Rödermark (2011)

  • Krooss, B.M., Busch, A., Gensterblum, Y., Prinz, D.: Sorption and desorption processes of methane and carbon dioxide on coals and shales—experiments and theory. Search Discov. Article 40376, 1–27 (2009)

    Google Scholar 

  • Lopatkin, A.A., Moreva, A.A., Kuznetsov, B.V.: Heat capacity and entropy of adsorption of benzene on FAS carbon. Russ. J. Phys. Chem. A 81(7), 1113–1116 (2007)

    Article  CAS  Google Scholar 

  • Mersmann: Personal communication (1999)

  • Mulloth, L.M., Finn, J-E.: Carbon dioxide adsorption on a 5A zeolite designed for CO2 removal in spacecraft cabins, pp. 1–12. NASA/TM-1998-208752 (1998)

  • Myers, A.L.: Equation of state for adsorption of gases and their mixtures in porous materials. Adsorption 9(2003), 9–16 (2003)

    Article  CAS  Google Scholar 

  • Nikolaev, K.M., Dubinin, M.M.: Concerning adsorptional properties of carbon adsorbents 3. A study of adsorption isotherms of gases and vapors on active carbons over a wide interval of temperatures, including the critical region (traslated from Izvestiya Akademii Nauk: SSSR). Seriya Khimicheskaya 7(10), 124–1133 (1958)

    Google Scholar 

  • Polanyi, M.: Über die Adsorption vom Standpunkt des dritten Wärmesatzes. Verh. Dtsch. Phys. Ges. 16, 1012–1016 (1914)

    CAS  Google Scholar 

  • Polanyi, M.: Adsorption von Gasen (Dämpfen) durch ein festes nichtflüchtiges Adsorberis. Verh. Dtsch. Phys. Ges. 18, 55–80 (1916)

    CAS  Google Scholar 

  • Polanyi, M.: Theories of the adsorption of gases. A general survey and some additional remarks. Trans. Faraday Soc. 28, 316–333 (1932)

    Article  CAS  Google Scholar 

  • Ramirez, D., Qi, S., Rood, M.J.: Equilibrium and heat of adsorption for organic vapours and activated carbons. Environ. Sci. Technol. 39(2005), 5864–5871 (2005)

    Article  CAS  Google Scholar 

  • Rudisil Edgar, N., Hacskaylo John, J., Douglas, L.V.: Coadsorption of hydrocarbons and water on BPL activated carbon. Ind. Eng. Chem. Res. 31, 1122–1130 (1992)

    Article  Google Scholar 

  • Ruthven, D.M., Loughlin, K.F., Derrah, R.I.: Sorption and diffusion of light hydrocarbons and other simple nonpolar molecules in type A zeolites. Adv. Chem. 121, 330 (1973)

    Article  CAS  Google Scholar 

  • Schippert, E.: Electrically regenerated activated carbon fiber cloths for exposure reduction of tobacco smoke. Philipp Morris Report. http://www.htw-saarland.de/forschung/struktur/forschungseinrichtungen/ipp/gvt/alza/ (2003). Accessed 30 Jan 2003

  • Schippert, E., Kimmerle, K.: Adsorption von Lösemitteln an mikroporösen Aktivkohlefasern. Teil 1, Anwendung, Experimente und Messergebnisse. F&S Filtrieren und Separieren. Jahrgang 22(5), 238–224 (2008)

  • Schippert, E., Kimmerle, K.: Adsorption von Lösemitteln an mikroporösen Aktivkohlefasern. Teil 2, Modellbildung und Messergebnisse. F&S Filtrieren und Separieren. Jahrgang 22(6), 309–316 (2008)

  • Schippert, E., Kimmerle, K.: Adsorption von Lösemitteln an mikroporösen Aktivkohlefasern: Teil 3, Messergebnisse mit Parametertabelle zur Modellrechnung, Vergleich der differentiellen und integralen Funktionen von Enthalpie und Entropie. F&S Filtrieren und Separieren. Jahrgang 23(3), 140–145 (2009)

    CAS  Google Scholar 

  • Schippert, E., Kimmerle, K.: Adsorption von Lösemitteln an mikroporösen Aktivkohlefasern. Teil 4, Darstellung im dreidimensionalen Mollierdiagramm, Diskussion und Zusammen-fassung der Ergebnisse der Teile I bis III. F&S Filtrieren und Separieren. Jahrgang 23(4), 200–206 (2009)

  • Schippert, E., Pannwitt, B., Möhner, C.: Unpublished results, measured according to Philipp Morris Report (2006)

  • Seliverstova, I.I., Fomkin, A.A., Serpinskii, V.V.: Adsorption of a liquid on a microporous adsorbent along the liquid-vapor equilibrium line. Communication 2: Average density of adsorbed substances in a micro-porous adsorbent. Seriya Khimicheskaya (6), 1231–1236 (1986)

  • Shivaji, S., Ramesh, G.: A semi-empirical adsorption equation for single component gas-solid equilibria. AlChE J. 27(5), 806–812 (1981)

    Article  Google Scholar 

  • Tóth, J.: Theory, Modeling and Analysis of Adsorption, (surfactant science series vol. 107). Marcel Dekker AG, New York-Basel (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Kimmerle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 267 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimmerle, K., Schippert, E. Thermodynamic characterisation of adsorptive gas/adsorbent systems using the ALIc-model. Adsorption 19, 1093–1108 (2013). https://doi.org/10.1007/s10450-013-9520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9520-9

Keywords

Navigation