Skip to main content
Log in

Analysis of Metabolites of Anthraquinones by Human Fecal Bacteria Using UPLC-Q-TOF-HRMS/MS

Chromatographia Aims and scope Submit manuscript

Abstract

This study aimed to investigate the metabolism of anthraquinones, including chrysophanol (1), rhein (2), aloe-emodin (3), emodin (4), sennoside A (5) and sennoside B (6), by mixed human fecal bacteria to clarify the relationship between their chemical structural characteristics and intestinal metabolism. Six parent compounds were incubated with mixed human fecal bacteria in vitro to study the metabolic process. A highly sensitive and specific ultra-performance liquid chromatography-quadrupole time-of-flight high-resolution tandem mass spectrometry (UPLC-Q-TOF-HRMS/MS) with MSE technology and MetaboLynx software has been developed to analyze the metabolites of anthraquinones. With this method, a total of ten metabolites were identified, including 1,4,8-trihydroxy-3-hydroxymethylanthraquinone (M1), 2-methylrhein (M2), 7-methylrhein (M3), methyl-esterificated rhein (M4), 1,8-dihydroxy-3-hydroxymethyl-4-methylanthraquinone (M5), physcion (M6), sennidin A (M7), rhein (M8), sennidin B (M9) and rhein (M10), six (M1–M6) of which were first detected on the basis of the exact mass by mixed human fecal bacteria in this work. The metabolism of anthraquinones occurred via hydroxylation, oxidation, methylation, deglycosylation and esterification. In particular, the methyl-esterificated rhein (M4) was first identified as one of the metabolites of rhein, whose metabolic pathway (esterification) is also reported for the first time. The presence of human fecal bacteria played a vital role in the metabolism of anthraquinones and the substitutional groups determined the different metabolic reactions for anthraquinones, which will be useful for the investigation of the study of anthraquinones in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Wei SY, Yao WX, Ji WY, Wei JQ, Peng SQ (2013) Food Chem 141:1710–1715

    Article  CAS  Google Scholar 

  2. Chen WH, Chen J, Shi YP (2011) J Asian Nat Prog Res 13:1036–1041

    Article  CAS  Google Scholar 

  3. Wen XX, Luo KD, Xiao S, Ai N, Wang SF, Fan XH (2016) Biomed Chromatogr 30:1249–1262

    Google Scholar 

  4. Li SW, Yang TC, Lai CC, Huang SH, Liao JM, Wan J, Lin YJ, Lin CW (2014) Eur J Pharmacol 738:125–132

  5. Wang J, Zhao Y, Jin C, Liu D (2011) PLoS One 6:1367–1368

    Google Scholar 

  6. Ko JC, Tsai MS, Kuo YH, Chiu YF, Weng SH, Su YC, Lin YW (2011) Biochem Pharmacol 81:680–690

    Article  CAS  Google Scholar 

  7. Yeap S, Akhtar MN, Lim KL, Abu N, Ho WY, Zareen S, Roohani K, Ky H, Tan SW, Lajis N, Alitheen NB (2015) Drug Des Dev Ther 9:983–992

    Google Scholar 

  8. Arvindekar A, More T, Payqhan PV, Laddha K, Ghoshal N (2015) Food Funct 6:932017-8

    Article  Google Scholar 

  9. Xing SH, Wang MY, Peng Y, Dong YQ, Li XB (2015) Nat Med 69:171–177

    Article  CAS  Google Scholar 

  10. Zhang W, Jiang S, Qian DW, Shang EX, Duan JA (2014) Chromatographia 77:439–445

    Article  CAS  Google Scholar 

  11. Song R, Xu L, Xu FG, Dong HJ, Tian YA, Zhang ZJ (2011) Biomed Chromatogr 25:417–426

    Article  CAS  Google Scholar 

  12. Lee JH, Kim JM, Kim C (2003) J Ethnopharmacol 84:5–9

    Article  CAS  Google Scholar 

  13. Shia CS, Juang SH, Tsai SY, Chang PH, Kuo SC, Hou YC, Chao PDL (2009) Planta Med 75:1386–1392

    Article  CAS  Google Scholar 

  14. Wang DG, Chen LN, Zhu Q, Chen GT, Liu BH (2013) J Chem Soc Pak 35:1168–1173

    CAS  Google Scholar 

  15. Dreessen M, Eyssen H, Lemli J (1981) J Pharm Pharmacol 33:679–681

    Article  CAS  Google Scholar 

  16. de Witte P, Lemli J (1988) Pharmacology 36(suppl. 1):152–157

    Article  Google Scholar 

  17. de Witte P, Van Hoestenberghe A, Eyssen H (1992) Biopharm Drug Dipos 13:243–253

    Article  Google Scholar 

  18. Harroti M, Kim G, Motoike S, Kobashi K, Namba T (1982) Chem Pharm Bull 30:1338–1346

    Article  Google Scholar 

  19. Lemli J, Lemmens L (1980) Pharmacology 20(suppl. 1):50–57

    Article  CAS  Google Scholar 

  20. Hattori M, Kim G, Motoike S, Kobashi K, Namba T (1988) Pharmacology 36(suppl. 1):172–179

    Article  CAS  Google Scholar 

  21. Kobashi K, Nishimura T, Kusaka M, Hattori M, Namba T (1980) Planta Med 40:225–236

    Article  CAS  Google Scholar 

  22. Meselhy MR, Nishimoto E, Akao T (2001) J Trad Med 18:169–176

    CAS  Google Scholar 

  23. Tomotari M (2014) Bioscience of microbiota. Food Health 33:99–116

    Google Scholar 

  24. Savage DC (1977) Annu Rev Microbiol 31:107–133

    Article  CAS  Google Scholar 

  25. Wyatt GM, Horn N (1988) J Sci Food Agric 44:281–288

    Article  Google Scholar 

  26. Li M, Zhou HK, Hua WY, Wang BH, Wang SY, Zhao GP, Li LJ, Zhao LP, Pang XY (2009) Syst Appl Microbiol 32:193–200

    Article  Google Scholar 

  27. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) Rapid Commun Mass Spectrom 20:1989–1994

    Article  CAS  Google Scholar 

  28. Yan GL, Sun H, Sun WJ, Zhao L, Meng XC, Wang XJ (2010) J Pharmaceut Biomed 53:421–431

    Article  CAS  Google Scholar 

  29. Yang SP, Shi WM, Hu DF, Zhang SX, Zhang HY, Wang ZH, Cheng LL, Sun FF, Shen JZ, Cao XY (2014) J Agric Food Chem 62:9201–9210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Science Foundation of China (No. 81274062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

M. Fan and C. Peng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, M., Peng, C., Peng, Y. et al. Analysis of Metabolites of Anthraquinones by Human Fecal Bacteria Using UPLC-Q-TOF-HRMS/MS. Chromatographia 79, 1593–1604 (2016). https://doi.org/10.1007/s10337-016-3183-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3183-0

Keywords

Navigation