Skip to main content
Log in

A New Pulsed Flow Modulation GC × GC–MS with Cold EI System and Its Application for Jet Fuel Analysis

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

We designed and operated a new system of pulsed flow modulation (PFM) two dimensional comprehensive gas chromatography (GC × GC) mass spectrometry (MS). This system is based on the combination of PFM–GC × GC with a quadrupole mass spectrometer of GC–MS via a supersonic molecular beams interface and its fly-through Cold EI ion source and applied this system for the analysis of JP8 jet fuel. PFM is a simple GC × GC modulator that does not consume cryogenic gases while providing tunable second GC × GC column injection time for enabling the use of quadrupole based mass spectrometry regardless its limited scanning speed. We analyzed JP8 jet fuel with our new PFM–GC × GC–MS with Cold EI system and found that as the second dimension GC elution time is increased the observed molecular ion mass is reduced. This unique observation that helped in improved sample compounds identification under co-elution conditions was enabled via having abundant molecular ions in Cold EI for all the fuel compounds. We named this type of analysis as PFM–GC × GC × MS. We found and discuss in this paper that PFM–GC × GC–MS with Cold EI combines improved separation of GC × GC with Cold EI benefits of tailing-free ultra-fast ion source response time and enhanced molecular ions and mass spectral isomer and isotope information for the provision of increased sample identification information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Z, Phillips JB (1991) Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci 29:227–231

    Article  CAS  Google Scholar 

  2. Phillips JB, Xu J (1995) Comprehensive multi-dimensional gas chromatography. J Chromatogr A 703:327–334

    Article  CAS  Google Scholar 

  3. Phillips JB, Ledford EB (1996) Thermal modulation: a chemical instrumentation component of potential value in improving portability. Field Anal Chem Technol 1:23–29

    Article  CAS  Google Scholar 

  4. Phillips JB, Gaines RB, Blomberg J, Van Der Wielen FWM, Dimandja JM, Green V, Granger J, Patterson D, Racovalis L, De Geus HJ, De Boer J, Haglund P, Lipsky J, Sinha V, Ledford EB (1999) A robust thermal modulator for comprehensive two-dimensional gas chromatography. J High Resolut Chromatogr 22:3–10

    Article  CAS  Google Scholar 

  5. Phillips JB, Beens J (1999) Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions. J Chromatogr A 856:331–347

    Article  CAS  Google Scholar 

  6. Dalluge J, Beens J, Brinkman UAT (2003) Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. J Chromatogr A 1000:69–108

    Article  CAS  Google Scholar 

  7. Pursch M, Sun K, Winniford B et al (2002) Modulation techniques and applications in comprehensive two-dimensional gas chromatography (GC × GC). Anal Bioanal Chem 373:356–367

    Article  CAS  Google Scholar 

  8. Marriott PJ, Kinghorn RM, Ong R, Morrison P, Haglund P, Harju M (2000) Comparison of thermal sweeper and cryogenic modulator technology for comprehensive gas chromatography. J High Resolut Chromatogr 23:253–258

    Article  CAS  Google Scholar 

  9. Bertsch W (1999) Two-dimensional gas chromatography. concepts, instrumentation, and applications—Part 1: fundamentals, conventional two-dimensional gas chromatography, selected applications. J High Resolut Chromatogr 22:647–665

    Article  CAS  Google Scholar 

  10. Snow NH (2007) Biological, clinical, and forensic analysis using comprehensive two-dimensional gas chromatography. Adv Chromatogr 45:215–243

    Article  CAS  Google Scholar 

  11. Seeley JV (2012) Recent advances in flow-controlled multidimensional gas chromatography. J Chromatogr A 1255:24–37

    Article  CAS  Google Scholar 

  12. Mondello L, Tranchida PQ, Dugo P, Dugo G (2008) Comprehensive two-dimensional gas chromatography–mass spectrometry: a review. Mass Spectrom Rev 27:101–124

    Article  CAS  Google Scholar 

  13. Mondello L, Lewis AC, Bartle KD (2001) Multidimensional chromatography. Wiley, New York

    Book  Google Scholar 

  14. Mondello L (2011) Comprehensive chromatography in combination with mass spectrometry. Wiley, New York

    Book  Google Scholar 

  15. Shellie R, Marriott P, Morrison P (2001) Concepts and preliminary observations on the triple-dimensional analysis of complex volatile samples by using GC × GC–TOFMS. Anal Chem 73:1336–1344

    Article  CAS  Google Scholar 

  16. Shellie R, Marriott P, Morrison P (2004) Comprehensive two-dimensional gas chromatography with flame ionization and time-of-flight mass spectrometry detection: qualitative and quantitative analysis of West Australian Sandalwood Oil. J Chromatogr Sci 42:417–422

    Article  CAS  Google Scholar 

  17. Frysinger GS, Gaines RB (1999) Comprehensive two-dimensional gas chromatography with mass spectrometric detection (GC × GC/MS) applied to the analysis of petroleum. J High Resolut Chromatogr 22:251–255

    Article  CAS  Google Scholar 

  18. Shellie RA, Marriott PJ (2003) Comprehensive two-dimensional gas chromatography-mass spectrometry analysis of Pelargonium graveolens essential oil using rapid scanning quadrupole mass spectrometry. Analyst 128:879–883

    Article  CAS  Google Scholar 

  19. Mondello L, Casilli A, Tranchida PQ, Dugo G, Dugo P (2005) Comprehensive two-dimensional gas chromatography in combination with rapid scanning quadrupole mass spectrometry in perfume analysis. J Chromatogr A 1067:235–243

    Article  CAS  Google Scholar 

  20. Adahchour M, Brandt M, Baier HU, Vreuls RJJ, Batenburg AM, Brinkman UAT (2005) Comprehensive two-dimensional gas chromatography coupled to a rapid-scanning quadrupole mass spectrometer: principles and applications. J Chromatogr A 1067:245–254

    Article  CAS  Google Scholar 

  21. Seeley JV, Kramp F, Hicks CJ (2000) Comprehensive two-dimensional gas chromatography via differential flow modulation. Anal Chem 72:4346–4352

    Article  CAS  Google Scholar 

  22. Wells G (1986) Sample modulator cell for gas chromatography, US patent 4,617,032

  23. Wells G (1985) Design and performance of a mass-flow-modulated detector for gas chromatography. J Chromatogr A 319:263–272

    Article  CAS  Google Scholar 

  24. Kochman M, Gordin A, Alon T, Amirav A (2006) Flow modulation comprehensive two-dimensional gas chromatography–mass spectrometry with a supersonic molecular beam. J Chromatogr A 1129:95–104

    Article  CAS  Google Scholar 

  25. Amirav A (2008) Pulsed flow modulation gas chromatography mass spectrometry with supersonic molecular beams method and apparatus, Israel patent number 176724 and US Patent number 7,518,103. First submission date is June 2006

  26. Poliak M, Kochman M, Amirav A (2008) Pulsed flow modulation comprehensive two-dimensional gas chromatography. J Chromatogr A 1186:189–195

    Article  CAS  Google Scholar 

  27. Poliak M, Fialkov AB, Amirav A (2008) Pulsed flow modulation two-dimensional comprehensive gas chromatography–tandem mass spectrometry with supersonic molecular beams. J Chromatogr A 1210:108–114

    Article  CAS  Google Scholar 

  28. Seeley JV, Micyus NJ, McCurry JD, Seeley SK (2006) Comprehensive two-dimensional gas chromatography with a simple fluidic modulator. Am Lab 38:24–26

    CAS  Google Scholar 

  29. Harvey PM, Shellie RA, Haddad PR (2010) Design considerations for pulsed-flow comprehensive two-dimensional GC: dynamic flow model approach. J Chromatogr Sci 48:245–250

    Article  CAS  Google Scholar 

  30. Harvey PM, Shellie RA (2011) Factors affecting peak shape in comprehensive two-dimensional gas chromatography with non-focusing modulation. J Chromatogr A 1218:3153–3158

    Article  CAS  Google Scholar 

  31. Tranchida PQ, Purcaro G, Visco A, Conte L, Dugo P, Dawes P, Mondello L (2011) A flexible loop-type flow modulator for comprehensive two-dimensional gas chromatography. J Chromatogr A 1218:3140–3145

    Article  CAS  Google Scholar 

  32. Tranchida PQ, Franchina FA, Dugo P, Mondello L (2014) Flow-modulation low-pressure comprehensive two-dimensional gas chromatography. J Chromatogr A 1372C:236–244

    Article  Google Scholar 

  33. Tranchida PQ, Franchina FA, Dugo P, Mondello L (2014) Use of greatly-reduced gas flows in flow-modulated comprehensive two-dimensional gas chromatography–mass spectrometry. J Chromatogr A 1359:271–276

    Article  CAS  Google Scholar 

  34. Amirav A, Fialkov AB, Gordin A (2002) Improved electron ionization ion source for the detection of supersonic molecular beams. Rev Sci Instrum 73:2872–2876

    Article  CAS  Google Scholar 

  35. Amirav A, Gordin A, Poliak M, Fialkov AB (2008) Gas chromatography–mass spectrometry with supersonic molecular beams. J Mass Spectrom 43:141–163

    Article  CAS  Google Scholar 

  36. Alon T, Amirav A (2006) Isotope abundance analysis methods and software for improved sample identification with supersonic gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 20:2579–2588

    Article  CAS  Google Scholar 

  37. Fraga CG, Prazen BJ, Synovec RE (2000) Comprehensive two-dimensional gas chromatography and chemometrics for the high-speed quantitative analysis of aromatic isomers in a jet fuel using the standard addition method and an objective retention time alignment algorithm. Anal Chem 72:4154–4162

    Article  CAS  Google Scholar 

  38. Alon T, Amirav A (2015) How enhanced molecular ions in Cold EI improve compound identification by the NIST Library. Rapid Commun Mass Spectrom 29:2287–2292

    Article  CAS  Google Scholar 

  39. Wang FCY, Qian K, Green LA (2005) GC × MS of diesel: a two-dimensional separation approach. Anal Chem 77:2777–2785

    Article  CAS  Google Scholar 

  40. Seeley JV, Seeley SK, Libby EK, McCurry JD (2007) Analysis of biodiesel/petroleum diesel blends with comprehensive two-dimensional gas chromatography. J Chromatogr Sci 45:650–656

    Article  CAS  Google Scholar 

  41. Seeley JV, Bates CT, McCurry JD, Seeley SK (2012) Stationary phase selection and comprehensive two-dimensional gas chromatographic analysis of Trace biodiesel in petroleum-based fuel. J Chromatogr A 1226:103–109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities (Grants numbers 393/11 and 356/15). This research was also supported by the Ministry of Science and Technology, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aviv Amirav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in the topical collection 2015 International Symposium on GPC/SEC and Related Techniques with guest editor André M. Striegel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshet, U., Fialkov, A.B., Alon, T. et al. A New Pulsed Flow Modulation GC × GC–MS with Cold EI System and Its Application for Jet Fuel Analysis. Chromatographia 79, 741–754 (2016). https://doi.org/10.1007/s10337-016-3087-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3087-z

Keywords

Navigation