Skip to main content

Advertisement

Log in

Simultaneous Chiral Separation of Four H1-Antihistamines by Capillary Zone Electrophoresis Using a Dual Cyclodextrin System

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Capillary zone electrophoresis employing a dual cyclodextrin (CD) system, consisting of anionic sulfobutylether-β-CD and native β-CD, was developed for the simultaneous chiral separation of four H1-antihistamine racemates (brompheniramine, chlorpheniramine, cetirizine and promethazine). A cost-effective screening using different native and derivatized, neutral and ionized CDs as chiral selectors was performed to find suitable derivatives for the dual CD system. Under the optimized conditions consisting of 25 mM phosphate background electrolyte at pH 7.0, a combination of 15 mM SBE-β-CD and 10 mM β-CD as chiral selectors, +25 kV applied voltage and 20 °C system temperature, the baseline chiral separation of all racemates was accomplished in less than 8 min. The method proved to be suitable for routine analysis, since it provided satisfactory results during sensitivity, linearity and repeatability studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Simons FER, Simons KJ (2011) Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol 128:1139–1150

    Article  CAS  Google Scholar 

  2. Mahdy AM, Webster NR (2014) Histamine and antihistamines. Anaesth Intensive Care Med 15:250–255

    Article  Google Scholar 

  3. Casy AF, Drake AF, Ganellin CR et al (1992) Stereochemical studies of chiral H-1 antagonists of histamine: the resolution, chiral analysis, and biological evaluation of four antipodal pairs. Chirality 4:356–366

    Article  CAS  Google Scholar 

  4. Haginaka J, Kagawa C (2004) Retentivity and enantioselectivity of uniformly sized molecularly imprinted polymers for d-chlorpheniramine and -brompheniramine in hydro-organic mobile phases. J Chromatogr B Analyt Technol Biomed Life Sci 804:19–24

    Article  CAS  Google Scholar 

  5. Taha EA, Salama NN, Wang S (2009) Enantioseparation of cetirizine by chromatographic methods and discrimination by 1H-NMR. Drug Test Anal 1:118–124

    Article  CAS  Google Scholar 

  6. Yuan LM, Liu JC, Yan ZH et al (2005) Enantioseparation of chlorpheniramine by high speed countercurrent chromatography using carboxymethyl-β-cyclodextrin as chiral selector. J Liq Chromatogr Relat Technol 28:3057–3063

    Article  CAS  Google Scholar 

  7. Toribio L, del Nozal MJ, Bernal JL et al (2006) Study of the enantiomeric separation of oxfendazole and cetirizine using subcritical fluid chromatography on an amylose-based column. J Chromatogr A 1121:268–273

    Article  CAS  Google Scholar 

  8. Gübitz G, Schmid MG (2004) Recent advances in chiral separation principles in capillary electrophoresis and and capillary electrochromatography. Electrophoresis 23:3981–3996

    Article  Google Scholar 

  9. Stavrou IJ, Mavroudl MC, Kapnissi-Christodoulou CP (2015) Chiral selectors in CE: recent developments and application. Electrophoresis 36:101–123

    Article  CAS  Google Scholar 

  10. Szente L, Szemán J (2013) Cyclodextrins in analytical chemistry: host-guest type molecular recognition. Anal Chem 85:8024–8030

    Article  CAS  Google Scholar 

  11. Chankvetadze B, Lindner W, Scriba GKE (2004) Enantiomer separations in capillary electrophoresis in the case of equal binding constants of the enantiomers with a chiral selector: commentary on the feasibility of the concept. Anal Chem 76:4256–4260

    Article  CAS  Google Scholar 

  12. Escuder-Gilabert L, Martín-Biosca Y, Medina-Hernández MJ, Sagrado S (2014) Cyclodextrins in capillary electrophoresis: recent developments and new trends. J Chromatogr A 1357:2–23

    Article  CAS  Google Scholar 

  13. Rezanska P, Navratilova K, Rezanska M, Kral V, Sykora D (2014) Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 35:2701–2721

    Article  Google Scholar 

  14. Chankvetadze B, Endresz G, Blaschke G (1996) Charged cyclodextrin derivatives as chiral selectors in capillary electrophoresis. Chem Soc Rev 25:141–153

    Article  CAS  Google Scholar 

  15. Müllerová L, Dubsky P, Gas B (2014) Twenty years of development of dual and multi-selector models in capillary electrophoresis: a review. Electrophoresis 35:2688–2700

    Article  Google Scholar 

  16. Otsuka K, Terabe S (1993) Optical resolution of chlorpheniramine by cyclodextrin added capillary zone electrophoresis and cyclodextrin modified micellar electrokinetic chromatography. J Liq Chromatogr 16:945–953

    Article  CAS  Google Scholar 

  17. Chankvetadze B, Burjanadze N, Pintore G et al (2000) Separation of brompheniramine enantiomers by capillary electrophoresis and study of chiral recognition mechanisms of cyclodextrins using NMR-spectroscopy, UV spectrometry, electrospray ionization mass spectrometry and X-ray crystallography. J Chromatogr A 875:471–484

    Article  CAS  Google Scholar 

  18. Ho Y-H, Wu H-L, Wu S-M et al (2003) Quantitative enantiomeric analysis of chlorcyclizine, hydroxyzine, and meclizine by capillary electrophoresis. Anal Bioanal Chem 376:859–863

    Article  CAS  Google Scholar 

  19. Mikus P, Valásková I, Havránek E (2005) Enantioselective determination of pheniramine in pharmaceuticals by capillary electrophoresis with charged cyclodextrin. J Pharm Biomed Anal 38:442–448

    Article  CAS  Google Scholar 

  20. Chou Y-W, Huang W-S, Ko C-C, Chen S-H (2008) Enantioseparation of cetirizine by sulfated-beta-cyclodextrin-mediated capillary electrophoresis. J Sep Sci 31:845–852

    Article  CAS  Google Scholar 

  21. Jin Y, Stalcup AM (1998) Application of heparin to chiral separations of antihistamines by capillary electrophoresis. Electrophoresis 19:2119–2123

    Article  CAS  Google Scholar 

  22. Gagyi L, Gyéresi A, Kilár F (2006) Role of chemical structure in stereoselective recognition of beta-blockers and H1-antihistamines by human serum transferrin in capillary zone electrophoresis. Electrophoresis 27:1510–1516

    Article  CAS  Google Scholar 

  23. Martínez-Gómez MA, Sagrado S, Villanueva-Camañas RM, Medina-Hernández MJ (2007) Enantiomeric quality control of antihistamines in pharmaceuticals by affinity electrokinetic chromatography with human serum albumin as chiral selector. Anal Chim Acta 592:202–209

    Article  Google Scholar 

  24. Nojavan S, Fakhari AR (2011) Chiral separation and quantitation of cetirizine and hydroxyzine by maltodextrin-mediated CE in human plasma: effect of zwitterionic property of cetirizine on enantioseparation. Electrophoresis 32:764–771

    Article  CAS  Google Scholar 

  25. Cui Y, Ma X, Zhao M et al (2013) Combined use of ionic liquid and hydroxypropyl-β-cyclodextrin for the enantioseparation of ten drugs by capillary electrophoresis. Chirality 25:409–414

    Article  CAS  Google Scholar 

  26. La S, Kim J, Kim JH, Goto J, Kim KR (2003) Simultaneous chiral discrimination of multiple profens by cyclodextrin-modified capillary electrophoresis in normal and reversed polarity modes. Electrophoresis 24:2642–2649

    Article  CAS  Google Scholar 

  27. Chu BL, Guo B, Zuo H, Wang Z, Lin JM (2008) Simultaneous enantioseparation of antiparkinsonian medication Rotigotine and related chiral impurities by capillary zone electrophoresis using dual cyclodextrin system. J Pharm Biomed Anal 46:854–859

    Article  CAS  Google Scholar 

  28. Marosi A, Kovács Z, Béni S et al (2009) Triprotic acid-base microequilibria and pharmacokinetic sequelae of cetirizine. Eur J Pharm Sci 37:321–328

    Article  CAS  Google Scholar 

  29. Desiderio C, Fanali S (1995) Use of negatively charged sulfobutyl ether-β-cyclodextrin for enantiomeric separation by capillary electrophiresis. J Chromatogr A 716:183–196

    Article  CAS  Google Scholar 

  30. Skanchy DJ, Xie GH, Tait RJ et al (1999) Application of sulfobuthyl ether-β-cyclodextrin with specific degree of substitution for the enantioseparation of pharmaceutical mixtures by capillary electrophoresis. Electrophoresis 20:2638–2649

    Article  CAS  Google Scholar 

  31. Lurie IS, Klein RF, Dal Cason TA et al (1994) Chiral resolution of cationic drugs of forensic interest by capillary electrophoresis with mixtures of neutral and anionic cyclodextrin. Anal Chem 66:4019–4026

    Article  CAS  Google Scholar 

  32. European Pharmacopoeia (2014), 8th edn. Council of Europe, Strasbourg

  33. Servais AC, Fillet M (2013) Application of dual cyclodextrin systems in capillary electrophoresis enantioseparations. Methods Mol Bio 970:289–295

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was published under the frame of European Social Fund, Human Resources Development Operational Programme 2007-2013, project no. POSDRU/159/1.5/S/136893. The first author would like to thank Collegium Talentum for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Hancu.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabó, ZI., Tóth, C., Hancu, G. et al. Simultaneous Chiral Separation of Four H1-Antihistamines by Capillary Zone Electrophoresis Using a Dual Cyclodextrin System. Chromatographia 78, 1377–1384 (2015). https://doi.org/10.1007/s10337-015-2967-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2967-y

Keywords

Navigation