Skip to main content
Log in

Comparing the conservatism of ecological interactions in plant–pollinator and plant–herbivore networks

  • Special Feature: Original Article
  • Unravelling ecological networks
  • Published:
Population Ecology

Abstract

Conservatism in species interaction, meaning that related species tend to interact with similar partners, is an important feature of ecological interactions. Studies at community scale highlight variations in conservatism strength depending on the characteristics of the ecological interaction studied. However, the heterogeneity of datasets and methods used prevent to compare results between mutualistic and antagonistic networks. Here we perform such a comparison by taking plant–insect communities as a study case, with data on plant–herbivore and plant–pollinator networks. Our analysis reveals that plants acting as resources for herbivores exhibit the strongest conservatism in species interaction among the four interacting groups. Conservatism levels are similar for insect pollinators, insect herbivores and plants as interacting partners of pollinators, although insect pollinators tend to have a slightly higher conservatism than the two others. Our results thus clearly support the current view that within antagonistic networks, conservatism is stronger for species as resources than for species as consumer. Although the pattern tends to be opposite for plant–pollinator networks, our results suggest that asymmetry in conservatism is much less pronounced between the pollinators and the plant they interact with. We discuss these differences in conservatism strength in relation with the processes structuring plant–insect communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal AA (2007) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109

    Article  PubMed  Google Scholar 

  • Allesina S, Pascual M (2009) Food web models: a plea for groups. Ecol Lett 12:652–662

    Article  PubMed  Google Scholar 

  • Andersson S, Nilsson LAA, Groth I, Bergstrom G (2002) Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Bot J Linn Soc 140:129–153

    Article  Google Scholar 

  • Bailey R, Schönrogge K, Cook JM, Melika G, Csóka G, Thuróczy C, Stone GN (2009) Host niches and defensive extended phenotypes structure parasitoid wasp communities. PLoS Biol 7:e1000179

    Article  PubMed Central  PubMed  Google Scholar 

  • Bersier L-F, Kehrli P (2008) The signature of phylogenetic constraints on food–web structure. Ecol Complex 5:132–139

    Article  Google Scholar 

  • Cagnolo L, Salvo A, Valladares G (2011) Network topology: patterns and mechanisms in plant–herbivore and host–parasitoid food webs. J Anim Ecol 80:342–351

    Article  PubMed  Google Scholar 

  • Cattin MF, Bersier LF, Banašek-Richter C, Baltensperger R, Gabriel JP (2004) Phylogenetic constraints and adaptation explain food–web structure. Nature 427:835–839

    Article  CAS  PubMed  Google Scholar 

  • Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology 87:S109–S122

    Article  PubMed  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Crawley MJ (2007) Steps involved in model simplification. In: Crawley MJ (ed) The R Book. R B, Wiley, pp 327–329

    Chapter  Google Scholar 

  • Denno R, McClure M, Ott J (1995) Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annu Rev Entomol 40:297–331

    Article  CAS  Google Scholar 

  • Eklöf A, Helmus MR, Moore M, Allesina S (2012) Relevance of evolutionary history for food web structure. Proc R Soc B Biol Sci 279:1588–1596

    Article  Google Scholar 

  • Elias M, Gompert Z, Jiggins C, Willmott K (2008) Mutualistic interactions drive ecological niche convergence in a diverse butterfly community. PLoS Biol 6:2642–2649

    Article  CAS  PubMed  Google Scholar 

  • Elias M, Fontaine C, van Veen FJF (2013) Evolutionary history and ecological processes shape a local multilevel antagonistic network. Curr Biol 23:1355–1359

    Article  CAS  PubMed  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Fontaine C, Thébault E, Dajoz I (2009) Are insect pollinators more generalist than insect herbivores? Proc R Soc B Biol Sci 276:3027–3033

    Article  Google Scholar 

  • Fontaine C, Guimarães PR, Kéfi S, Loeuille N, Memmott J, Van Der Putten WH, van Veen FJF, Thébault E (2011) The ecological and evolutionary implications of merging different types of networks. Ecol Lett 14:1170–1181

    Article  PubMed  Google Scholar 

  • Fründ J, Dormann CF, Holzschuh A, Tscharntke T (2013) Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94:2042–2054

    Article  PubMed  Google Scholar 

  • Ghazoul J (2006) Floral diversity and the facilitation of pollination. J Ecol 94:295–304

    Article  Google Scholar 

  • Gómez JM, Verdú M, Perfectti F (2010) Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465:918–921

    Article  PubMed  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philos Trans R Soc Lond B Biol Sci 326:119–157

    Article  CAS  PubMed  Google Scholar 

  • Guimarães PR, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885

    Article  PubMed  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425

    Article  Google Scholar 

  • Harmon LJ, Glor RE (2010) Poor statistical performance of the Mantel test in phylogenetic comparative analyses. Evolution 64:2173–2178

    PubMed  Google Scholar 

  • Ives AR, Godfray HCJ (2006) Phylogenetic analysis of trophic associations. Am Nat 168:E1–14

    Article  CAS  PubMed  Google Scholar 

  • Jacquemyn H, Merckx V, Brys R, Tyteca D, Cammue B, Honnay O, Lievens B (2011) Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytol 192:518–528

    Article  PubMed  Google Scholar 

  • Jordano P (2010) Coevolution in multispecific interactions among free-living species. Evol Educ Outreach 3:40–46

    Article  Google Scholar 

  • Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol Lett 10:977–994

    Article  PubMed  Google Scholar 

  • Kishi S, Tsubaki Y (2013) Avoidance of reproductive interference causes resource partitioning in bean beetle females. Popul Ecol 56:73–80

    Article  Google Scholar 

  • Krasnov BR, Fortuna MA, Mouillot D, Khokhlova IS, Shenbrot GI, Poulin R (2012) Phylogenetic signal in module composition and species connectivity in compartmentalized host–parasite networks. Am Nat 179:501–511

    Article  PubMed  Google Scholar 

  • Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66:1374–1393

    Article  CAS  PubMed  Google Scholar 

  • Memmott J (2009) Food webs: a ladder for picking strawberries or a practical tool for practical problems? Philos Trans R Soc Lond B Biol Sci 364:1693–1699

    Article  PubMed Central  PubMed  Google Scholar 

  • Mouquet N, Devictor V, Meynard CN, Munoz F, Bersier LF, Chave J, Couteron P, Dalecky A, Fontaine C, Gravel D, Hardy OJ, Jabot F, Lavergne S, Leibold M, Mouillot D, Münkemüller T, Pavoine S, Prinzing A, Rodrigues ASL, Rohr RP, Thébault E, Thuiller W (2012) Ecophylogenetics: advances and perspectives. Biol Rev 87:769–785

    Article  PubMed  Google Scholar 

  • Murphy SM (2004) Enemy-free space maintains swallowtail butterfly host shift. Proc Natl Acad Sci USA 101:18048–18052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naisbit RE, Rohr RP, Rossberg AG, Kehrli P, Bersier LF (2012) Phylogeny versus body size as determinants of food web structure. Proc R Soc B Biol Sci 279:3291–3297

    Article  Google Scholar 

  • Nielsen A, Bascompte J (2007) Ecological networks, nestedness and sampling effort. J Ecol 95:1134–1141

    Article  Google Scholar 

  • Noriyuki S, Osawa N, Nishida T (2012) Asymmetric reproductive interference between specialist and generalist predatory ladybirds. J Anim Ecol 81:1077–1085

    Article  PubMed  Google Scholar 

  • Nuismer SL, Thompson JN (2006) Coevolutionary alternation in antagonistic interactions. Evolution 60:2207–2217

    Article  PubMed  Google Scholar 

  • Nuismer SL, Doebeli M, Browning D (2005) The coevolutionary dynamics of antagonistic interactions mediated by quantitative traits with evolving variances. Evolution 59:2073–2082

    Article  CAS  PubMed  Google Scholar 

  • Nuismer SL, Jordano P, Bascompte J (2013) Coevolution and the architecture of mutualistic networks. Evolution 67:338–354

    Article  PubMed  Google Scholar 

  • Patterson DJ, Cooper J, Kirk PM, Pyle RL, Remsen DP (2010) Names are key to the big new biology. Trends Ecol Evol 25:686–691

    Article  CAS  PubMed  Google Scholar 

  • Pearse IS, Altermatt F (2013) Predicting novel trophic interactions in a non-native world. Ecol Lett 16:1088–1094

    Article  PubMed  Google Scholar 

  • Pearse IS, Harris DJ, Karban R, Sih A (2013) Predicting novel herbivore–plant interactions. Oikos 122:1554–1564

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Google Scholar 

  • Price PW (2003) Macroevolutionary theory on macroecological patterns. Cambridge University Press, Cambridge

    Google Scholar 

  • Rafferty NE, Ives AR (2013) Phylogenetic trait-based analyses of ecological networks. Ecology 94:2321–2333

    Article  PubMed Central  PubMed  Google Scholar 

  • Rees T (compiler) (2006) The interim register of marine and nonmarine genera (IRMNG). http://www.obis.org.au/irmng/. Accessed 1 March 2014

  • Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928

    Article  CAS  PubMed  Google Scholar 

  • Rezende EL, Albert EM, Fortuna M, Bascompte J (2009) Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol Lett 12:779–788

    Article  PubMed  Google Scholar 

  • Rossberg AG, Matsuda H, Amemiya T, Itoh K (2006) Food webs: experts consuming families of experts. J Theor Biol 241:552–563

    Article  CAS  PubMed  Google Scholar 

  • Schemske DW (1981) Floral convergence and pollinator sharing in two bee-pollinated tropical herbs. Ecology 62:946–954

    Article  Google Scholar 

  • Schiestl FP, Dötterl S (2012) The evolution of floral scent and olfactory preferences in pollinators: coevolution or pre-existing bias? Evolution 66:2042–2055

    Article  CAS  PubMed  Google Scholar 

  • Staniczenko PPA, Kopp JC, Allesina S (2013) The ghost of nestedness in ecological networks. Nat Commun 4:1391

    Article  PubMed  Google Scholar 

  • Thompson AR, Adam TC, Hultgren KM, Thacker CE (2013) Ecology and evolution affect network structure in an intimate marine mutualism. Am Nat 182:E58–72

    Article  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue M (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Weiss M (1995) Floral color change: a widespread functional convergence. Am J Bot 82:167–185

    Article  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  PubMed  Google Scholar 

  • Wink M, Mohamed GIA (2003) Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem Syst Ecol 31:897–917

    Article  CAS  Google Scholar 

  • Zimmerman M, Pleasants J (1982) Competition among pollinators: quantification of available resources. Oikos 38:381–383

    Article  Google Scholar 

Download references

Acknowledgments

We thank Owen T. Lewis, Jenella Loye, Teja Tscharntke, Lee A. Dyer and Dan H. Janzen for providing their datasets. The work was supported by the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Fontaine.

Additional information

This manuscript was submitted for the special feature based on a symposium in Osaka, Japan, held on 12 October 2013.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontaine, C., Thébault, E. Comparing the conservatism of ecological interactions in plant–pollinator and plant–herbivore networks. Popul Ecol 57, 29–36 (2015). https://doi.org/10.1007/s10144-014-0473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-014-0473-y

Keywords

Navigation