Skip to main content
Log in

Forest gene diversity is correlated with the composition and function of soil microbial communities

  • Special Feature: Original Article
  • Linking Genome to Ecosystem
  • Published:
Population Ecology

Abstract

The growing field of community and ecosystem genetics indicates that plant genotype and genotypic variation are important for structuring communities and ecosystem processes. Little is known, however, regarding the effects of stand gene diversity on soil communities and processes under field conditions. Utilizing natural genetic variation occurring in Populus spp. hybrid zones, we tested the hypothesis that stand gene diversity structures soil microbial communities and influences soil nutrient pools. We found significant unimodal patterns relating gene diversity to soil microbial community composition, microbial exoenzyme activity of a carbon-acquiring enzyme, and availability of soil nitrogen. Multivariate analyses indicate that this pattern is due to the correlation between gene diversity, plant secondary chemistry, and the composition of the microbial community that impacts the availability of soil nitrogen. Together, these data from a natural system indicate that stand gene diversity may affect soil microbial communities and soil processes in ways similar to species diversity (i.e., unimodal patterns). Our results further demonstrate that the effects of plant genetic diversity on other organisms may be mediated by plant functional trait variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bailey JK, Wooley SC, Lindroth RL, Whitham TG (2006) Importance of species interactions to community heritability: a genetic basis to trophic-level interactions. Ecol Lett 9:78–85

    PubMed  Google Scholar 

  • Bailey JK, Schweitzer JA, Koricheva J, Madritch MD, LeRoy CJ, Rehill BJ, Bangert RK, Fisher DG, Allen G, Whitham TG (2009) Community and ecosystem consequences of gene flow and genotypic diversity across systems and environments: a meta-analysis. Phil Trans R Soc B 364:1607–1616

    Article  PubMed  Google Scholar 

  • Barbour RC, O’Reilly-Wapstra JM, De Little DW, Jordan JG, Steane DA, Humphreys JR, Bailey JK, Whitham TG, Potts BM (2009a) Genetic similarity and hierarchical structure within a foundation tree species drives canopy community variation. Ecology 90:1762–1772

    Article  PubMed  Google Scholar 

  • Barbour BR, Baker SC, O’Reilly-Wapstra JM, Harvest TM, Potts BM (2009b) A footprint of tree genetics on the biota of the forest floor. Oikos 118:1917–1923

    Article  Google Scholar 

  • Bartelt-Ryser J, Joshi J, Schmid B, Brandl H, Balser T (2005) Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Per Plant Ecol Evol Syst 7:27–49

    Article  Google Scholar 

  • Basaraba J, Starkey RL (1966) Effect of plant tannins on decomposition of organic substances. Soil Sci 101:17–23

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1996) Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1595–1602

    Article  CAS  Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity in arbuscular mychorrizal fungi in a mown grassland. J Ecol 84:71–82

    Article  Google Scholar 

  • Binkley D, Hart SC (1989) The components of nitrogen availability assessment in forest soils. Adv Soil Sci 10:58–112

    Google Scholar 

  • Bligh EG, Dwyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  CAS  Google Scholar 

  • Bond EM, Chase JM (2002) Biodiversity and ecosystem functioning and local and regional spatial scales. Ecol Lett 5:467–470

    Article  Google Scholar 

  • Bossdorf O, Shuja Z, Banta JA (2009) Genotype and maternal environment affect belowground interactions between Arabidopsis thaliana and its competitors. Oikos 118:1541–1551

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Chase JM, Leibold MA (2002) Spatial scale dictates the productivity–biodiversity relationship. Nature 416:427–430

    Article  CAS  PubMed  Google Scholar 

  • Clark JS (2010) Individuals and the variation needed for high species diversity in forest trees. Science 327:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Crutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ (2006) Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313:966–968

    Article  CAS  PubMed  Google Scholar 

  • Crutsinger GM, Reynolds W, Classen AT, Sanders NJ (2008) Disparate effects of host–plant genotypic diversity on above- and belowground communities. Oecologia 158:65–75

    Article  PubMed  Google Scholar 

  • Crutsinger GM, Sanders NJ, Classen AT (2009) Comparing intra- and inter-specific variation on litter dynamics. Basic Appl Ecol 10:535–543

    Article  Google Scholar 

  • Dang CK, Chauvet E, Gessner MO (2005) Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecol Lett 8:1129–1137

    Article  Google Scholar 

  • Diab el Arab HG, Vilich V, Sikora RA (2001) The use of phospholipid fatty acid analysis (PLFA) in the determination of rhizosphere specific microbial communities (RSMC) of two wheat cultivars. Plant Soil 228:291–297

    Article  CAS  Google Scholar 

  • Diaz S, Hodgson JG, Thompson K, Abido M, Cornelissen JHC, Jalil A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Prunes G, Hamzehee B, Khoshnevi M, Perez-Harguindeguy N, Perez-Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-Diez A, Shaw S, Siavash B, Villar-Salvador P, Zak MRJ (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Fierer N, Jackson R (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Grandy NS, Six J, Paul EA (2009) Searching for unifying principles in soil biology. Soil Biol Biochem 41:2249–2256

    Article  CAS  Google Scholar 

  • Fischer DG, Hart SC, Whitham TG, Martinsen GD, Keim P (2004) Ecosystem implications of genetic variation in water-use of a dominant riparian tree. Oecologia 139:188–197

    Article  Google Scholar 

  • Fischer DG, Hart SC, Rehill BJ, Lindroth RL, Keim P, Whitham TG (2006) Do high-tannin leaves require more roots? Oecologia 149:668–675

    Article  CAS  PubMed  Google Scholar 

  • Fischer DG, Hart SC, LeRoy CJ, Whitham TG (2007) Variation in belowground carbon fluxes along a Populus hybridization gradient. New Phytol 176:415–425

    Article  PubMed  Google Scholar 

  • Fischer DG, Hart SC, Schweitzer JA, Selmants P, Whitham TG (2010) Soil nitrogen availability varies with plant genetics across diverse river drainages. Plant Soil 331:391–400

    Article  CAS  Google Scholar 

  • Frostegård Å, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:727–730

    Article  Google Scholar 

  • Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. TREE 25:372–380

    PubMed  Google Scholar 

  • Grayston SJ, Prescott CE (2005) Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol Biochem 37:1157–1167

    Article  CAS  Google Scholar 

  • Hagerman AE, Butler LG (1989) Choosing appropriate methods and standards for assaying tannin. J Chem Ecol 15:1795–1810

    Article  CAS  Google Scholar 

  • Hart SC, Firestone MK (1989) Evaluation of three in situ nitrogen availability assays. Can J For Res 19:185–191

    Article  Google Scholar 

  • Hart SC, Stark JM, Davidson AE, Firestone MK (1994) Nitrogen mineralization, immobilization and nitrification. In: Mickelson SH (ed) Methods of soil analysis, part 2. Soil Science Society of America Book Series, no. 5. Soil Science Society of America, Madison, pp 985–1018

    Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. TREE 15:238–243

    PubMed  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. TREE 7:336–339

    CAS  PubMed  Google Scholar 

  • Holeski LM, Vogelzang A, Stanosz G, Lindroth RL (2009) Incidence of Venturia shoot blight damage in aspen (Populus tremuloides Michx.) varies with tree chemistry and genotype. Biochem Syst Ecol 37:139–145

    Article  CAS  Google Scholar 

  • Hooper DU, Bignell EE, Brown VK, Brussaard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, van der Putten WH, de Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V (2000) Interaction between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms and feedbacks. BioScience 50:1049–1061

    Article  Google Scholar 

  • Horner JD, Gosz JR, Cates RG (1988) The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. Am Nat 132:869–883

    Article  Google Scholar 

  • Horner-Devine MC, Leibold MA, Smith VH, Bohannan BJM (2003) Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6:613–622

    Article  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Hughes AR, Stachowicz JJ, Williams SL (2009) Morphological and physiological variation among seagrass (Zostera marina) genotypes. Oecologia 159:725–733

    Article  PubMed  Google Scholar 

  • Iason GR, Lennon JJ, Pakeman RJ (2005) Does chemical composition of individual Scots pine trees determine the biodiversity of their associated ground vegetation? Ecol Lett 8:364–369

    Article  Google Scholar 

  • Johnson MTJ, Vellend M, Stinchcombe JR (2009) Evolution in plant populations as a driver of ecological changes in arthropod communities. Phil Trans R Soc B 364:1593–1606

    Article  PubMed  Google Scholar 

  • Karst J, Jones MD, Turkington R (2009) Ectomycorrhiza colonization and intraspecific variation in growth responses to lodgepole pine. Plant Ecol 200:161–165

    Article  Google Scholar 

  • Kasurinen A, Keinänen MM, Kaipainen S (2005) Below-ground response of silver birch trees exposed to elevated CO2 and O3 for three growing seasons. Glob Change Biol 11:1167–1179

    Article  Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66

    Article  CAS  Google Scholar 

  • Leckie SE (2005) Methods of microbial community profiling and their application to forest soils. For Ecol Manag 220:88–106

    Article  Google Scholar 

  • LeRoy CJ, Whitham TG, Keim P, Marks CJ (2006) Plant genes link forests and streams. Ecology 87:255–261

    Article  PubMed  Google Scholar 

  • Lojewski NR, Fischer DG, Bailey JK, Schweitzer JA, Whitham TG, Hart SC (2009) Genetic determination of aboveground net primary productivity in a riparian foundation tree species. Tree Physiol 29:1133–1142

    Article  PubMed  Google Scholar 

  • Madritch M, Donaldson JR, Lindroth RL (2006) Genetic identity of Populus tremuloides litter influences decomposition and nutrient release in a mixed forest stand. Ecosystems 9:528–537

    Article  CAS  Google Scholar 

  • Madritch MD, Donaldson JR, Lindroth RL (2007) Canopy herbivory mediates the influence of plant genotype on soil processes through frass deposition. Soil Biol Biochem 39:1192–1201

    Article  CAS  Google Scholar 

  • Madritch MD, Greene SL, Lindroth RL (2009) Genetic mosaics of ecosystem functioning across aspen-dominated landscapes. Oecologia 160:119–127

    Article  PubMed  Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between productivity and diversity? Ecology 82:2381–2396

    Article  Google Scholar 

  • Nierop KGJ, Preston CM, Verstraten JM (2006) Linking the B ring hydroxylation pattern of condensed tannins to C, N and P mineralization. A case study using four tannins. Soil Biol Biochem 38:2794–2802

    Article  CAS  Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant–litter–soil interactions in Northern California’s pygmy forest: a positive feedback? Biogeochemistry 42:189–220

    Article  CAS  Google Scholar 

  • O’Leary WM, Wilkinson SG (1988) Gram positive bacteria. In: Ratlidge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 117–202

    Google Scholar 

  • Pastor J, Aber JD, McClaugherty CA, Melillo JM (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Elsevier Science, USA

    Google Scholar 

  • Porter LJ, Hrstich LN, Chan BC (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230

    Article  CAS  Google Scholar 

  • Pregitzer CC, Bailey JK, Hart SC, Schweitzer JA (2010) Soils as agents of selection: feedbacks between plants and soils alter seedling survival and performance. Evol Ecol 24:1045–1059

    Article  Google Scholar 

  • Priha OS, Grayston L, Hiukka R, Pennanen T, Smolander A (2001) Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abes and Betula pendula at two forest sites. Biol Fertil Soils 33:17–24

    Article  CAS  Google Scholar 

  • Reed HE, Martiny JBH (2007) Testing the functional significance of microbial composition in natural communities. FEMS Microbiol Ecol 62:161–170

    Article  CAS  PubMed  Google Scholar 

  • Rehill BJ, Whitham TG, Martinsen GD, Schweitzer JA, Bailey JK, Lindroth RL (2006) Developmental trajectories in cottonwood phytochemistry. J Chem Ecol 32:2269–2285

    Article  CAS  PubMed  Google Scholar 

  • Rhoades C (1997) Single-tree influences on soil properties in agroforestry ecosystems: lessons from natural and savanna ecosystems. Agrofor Syst 35:71–94

    Article  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) Effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    Article  CAS  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochem 30:3875–3883

    Article  CAS  Google Scholar 

  • Schimel JP, Van Cleve K, Cates RG, Clausen TP, Reichardt PB (1996) Effects of balsam poplar (Populus balsamifera) tannins and low molecular-weight phenolics on microbial activity in tiaga floodplain soil: implications for changes in N cycling during succession. Can J Bot 74:84–90

    Article  CAS  Google Scholar 

  • Schweitzer JA, Bailey JK, Rehill BJ, Martinsen GD, Hart SC, Lindroth RL, Keim P, Whitham TG (2004) Genetically based trait in a dominant tree affects ecosystem processes. Ecol Lett 7:127–134

    Article  Google Scholar 

  • Schweitzer JA, Bailey JK, Hart SC, Wimp GM, Chapman SC, Whitham TG (2005) The interaction of plant genotype and herbivory decelerate leaf litter decomposition and alter nutrient dynamics. Oikos 110:133–145

    Article  CAS  Google Scholar 

  • Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV, Whitham TG, Hart SC (2008a) Soil microorganism–plant interactions: heritable relationship between plant genotype and associated microorgansims. Ecology 89:773–781

    Article  PubMed  Google Scholar 

  • Schweitzer JA, Madritch MD, Bailey JK, LeRoy CJ, Fischer DG, Rehill BJ, Lindroth RL, Hagerman AE, Wooley SC, Hart SC, Whitham TG (2008b) From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11:1005–1020

    Article  CAS  Google Scholar 

  • Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Whitham TG, Hart SC (in press) Functional and heritable consequences of plant genotype on community composition and ecosystem processes. In: Ohgushi T, Schmitz O, Holt R (eds) Ecology and evolution of trait-mediated indirect interactions: linking evolution, community, and ecosystem. Cambridge University Press, Cambridge

  • Shuster SM, Lonsdorf EV, Wimp GM, Bailey JK, Whitham TG (2006) Community heritability measures the evolutionary consequences of indirect genetic effects on community structure. Evolution 60:991–1003

    CAS  PubMed  Google Scholar 

  • Simchuk A (2008) The effect of fodder plant genotype on the variation of larvalfitness traits in genotype classes of green oak leafroller moth. Russ J Gen 44:418–424

    Article  CAS  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci 96:4786–4790

    Article  CAS  PubMed  Google Scholar 

  • Stone AC, Gehring CA, Whitham TG (2010) Drought negatively affects communities on a foundation tree: growth rings predict diversity. Oecologia 164:751–761

    Article  PubMed  Google Scholar 

  • Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of microbial community composition. Ecology 90:441–451

    Article  PubMed  Google Scholar 

  • Swaty RL, Deckert RJ, Whitham TG, Gehring CA (2004) Ectomycorrhizal abundance and community composition shifts with drought: predictions from tree rings. Ecology 85:1072–1084

    Article  Google Scholar 

  • Tabatabai MA, Dick WA (2002) Enzymes in soil: research and developments in measuring activities. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 567–596

    Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK, Vitousek PM (2001) Potential ecosystem-level effects of genetic variation among populations of Metrosideros polymorpha from a soil fertility gradient in Hawai’i. Oecologia 126:266–275

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    Article  CAS  Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL, Gallo ME, Lauber CL (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177

    Article  Google Scholar 

  • Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett 9:1127–1135

    Article  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1634 (a review)

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Walker LR, Bonner KI (2009) Among- and within-species variation in plant litter decomposition in contrasting long-term chronosequences. Funct Ecol 23:442–453

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • White DC, Davis WM, Nichols JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62

    Article  Google Scholar 

  • White DC, Ringleberg DB (1998) Signature lipid biomarker analysis. In: Burlage RS, Atlas R, Stahl D, Gessey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, Oxford, pp 255–272

    Google Scholar 

  • Whitham TG, Young BP, Martinsen GD, Gehring CA, Schweitzer JA, Shuster SM, Wimp GM, Fischer DG, Bailey JK, Lindroth RL, Woolbright SA, Kuske CR (2003) Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84:559–573

    Article  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf E, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks J, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  CAS  PubMed  Google Scholar 

  • Wimp GM, Young WP, Woolbright SA, Martinsen GD, Keim P, Whitham TG (2004) Conserving plant genetic diversity for dependent animal communities. Ecol Lett 7:776–780

    Article  Google Scholar 

  • Wilkinson SG (1988) Gram negative bacteria. In: Ratlidge C, Wilkninson SG (eds) Microbial lipids, vol 1. Academic, London, pp 299–488

    Google Scholar 

  • Zak DR, Pregitzer KS, Host GE (1986) Landscape variation in nitrogen mineralization and nitrification. Can J For Res 16:1258–1263

    Article  Google Scholar 

  • Zak DR, Blackwood CB, Waldrop MP (2006) A molecular dawn for biogeochemistry. TREE 21:288–295

    PubMed  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fert Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zinke PJ (1962) The pattern of individual forest trees on soil properties. Ecology 43:130–133

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to Takayuki Ohgushi for the invitation to participate in this Special Feature and for the gracious hospitality at the Center for Ecological Research and Kyoto University. Thanks to Northern Arizona University and the Utah Department of Transportation for support. Special thanks to Joe Bailey, Kevin Grady, Dan Guido, Greg Newman, Clara Pregitzer, and Michelle Stritar for help in the field or laboratory, and Steve Overby and Dana Erickson for laboratory space and support for the PLFA analyses. Comments from Randy Bangert, Joe Bailey, and two anonymous reviewers made significant improvements to the manuscript. This research was supported by National Science Foundation grants DEB-0078280 and DEB-0425908.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Schweitzer.

Additional information

This manuscript was submitted for the special feature based on the symposium in Kyoto, held on 18th October 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweitzer, J.A., Fischer, D.G., Rehill, B.J. et al. Forest gene diversity is correlated with the composition and function of soil microbial communities. Popul Ecol 53, 35–46 (2011). https://doi.org/10.1007/s10144-010-0252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-010-0252-3

Keywords

Navigation