Skip to main content
Log in

Scale dependency in seagrass dynamics: how does the neighboring effect vary with grain of observation?

  • Special Feature: Original Article
  • Spatial Connectivity and Scaling
  • Published:
Population Ecology

Abstract

Although the importance of spatial scale in ecology has been increasingly recognized, the effects on ecological processes of changing the grain size of the observation have rarely been tested for empirical populations. A seagrass bed is an ideal system to study scale-dependency because it occurs in two-dimensional shallow soft-bottoms and can be monitored on a broader scale by using remote-sensing techniques. To investigate the grain dependency of seagrass spatial dynamics, we analyzed the effect of neighboring vegetation on the annual transition between vegetated and unvegetated states in a seagrass meadow in Futtsu, Tokyo Bay. The presence or absence of seagrass vegetation was observed at different grains from aerial photographs taken annually over 17 years. We detected the presence of a neighboring effect both in the increasing process (transition from the unvegetated to the vegetated state) and the decreasing process (vice versa) of vegetation. In the increasing process, the intensity of the neighboring effect was positive with the small grain, but the effect decreased to 0 with grain of ca. 20 m. In the decreasing process, the neighboring effect was negative with the small grain and increased to 0 with grain of ca. 30 m. The observed grain dependency in the neighboring effects also varied among different positions of the bed and among different years. The grain dependency in the increasing process cannot solely be explained by shoot elongation of the seagrass, which can cause positive neighboring effects only at small grain (≤6 m). The neighboring effect at the greater grain can be regarded as an emergent property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alados CL, Pueyo Y, Navas D, Cabezudo B, Gonzalez A, Freeman DC (2005) Fractal analysis of plant spatial patterns: a monitoring tool for vegetation transition shifts. Biodivers Conserv 14:1453–1468. doi:10.1007/s10531-004-9669-3

    Article  Google Scholar 

  • Ardizzone G, Belluscio A, Maiorano L (2006) Long-term change in the structure of a Posidonia oceanica landscape and its reference for a monitoring plan. Mar Ecol (Berl) 27:299–309. doi:10.1111/j.1439-0485.2006.00128.x

    Article  Google Scholar 

  • Corry RC, Lafortezza R (2007) Sensitivity of landscape measurements to changing grain size for fine-scale design and management. Landsc Ecol Eng 3:47–53. doi:10.1007/s11355-006-0015-7

    Article  Google Scholar 

  • Crawford TW, Commito JA, Borowik AM (2006) Fractal characterization of Mytilus edulis L. spatial structure in intertidal landscapes using GIS methods. Landsc Ecol 21:1033–1044. doi:10.1007/s10980-006-0003-1

    Article  Google Scholar 

  • Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–377. doi:10.1016/0304-3770(91)90081-F

    Article  Google Scholar 

  • Duarte CM (2002) The future of seagrass meadows. Environ Conserv 29:192–206. doi:10.1017/S0376892902000127

    Google Scholar 

  • Duarte CM, Fourqurean JW, Krause-Jensen D, Olesen B (2006) Dynamics of seagrass stability and change. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Netherlands, pp 271–294

    Google Scholar 

  • Dungan JL, Perry JN, Dale MRT, Legendre P, Citron-Pousty S, Fortin MJ, Jakomulska A, Miriti M, Rosenberg MS (2002) A balanced view of scale in spatial statistical analysis. Ecography 25:626–640. doi:10.1034/j.1600-0587.2002.250510.x

    Article  Google Scholar 

  • Earth Resource Mapping Ltd (1998) ER Mapper 6.3. User Guide. San Diego

  • Fonseca M, Whitfield PE, Kelly NM, Bell SS (2002) Modeling seagrass landscape pattern and associated ecological attributes. Ecol Appl 12:218–237. doi:10.1890/1051-0761(2002)012[0218:MSLPAA]2.0.CO;2

    Article  Google Scholar 

  • Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Frederiksen M, Krause-Jensen D, Holmer M, Sund Laursen J (2004) Spatial and temporal variation in eelgrass (Zostera marina) landscapes: influence of physical setting. Aquat Bot 78:147–165. doi:10.1016/j.aquabot.2003.10.003

    Article  Google Scholar 

  • Frelich LE (1999) Minireviews: neighborhood effects, disturbance severity, and community stability in forests. Ecosystems (N. Y., Print) 2:151–166. doi:10.1007/s100219900066

    Article  Google Scholar 

  • Guichard F, Halpin PM, Allison GW, Lubchenco J, Menge BA (2003) Mussel disturbance dynamics: signatures of oceanographic forcing from local interactions. Am Nat 161:889–904. doi:10.1086/375300

    Article  PubMed  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Guisan A, Graham CH, Elith J, Huettmann F (2007) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340

    Article  Google Scholar 

  • Hartnett DC, Bazzaz FA (1985) The integration of neighbourhood effects by clonal genets in Solidago Canadensis. J Ecol 73:415–427. doi:10.2307/2260484

    Article  Google Scholar 

  • Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press, New York

    Google Scholar 

  • Jelinski DE, Wu J (1996) The modifiable areal unit problem and implications for landscape ecology. Landsc Ecol 11:129–140. doi:10.1007/BF02447512

    Article  Google Scholar 

  • Kendrick GA, Eckersley J, Walker DI (1999) Landscape-scale changes in seagrass distribution over time: a case study from Success Bank, Western Australia. Aquat Bot 65:293–309. doi:10.1016/S0304-3770(99)00047-9

    Article  Google Scholar 

  • Kendrick GA, Duarte CM, Marba N (2005) Clonality in seagrasses, emergent properties and seagrass landscapes. Mar Ecol Prog Ser 290:291–296. doi:10.3354/meps290291

    Article  Google Scholar 

  • Kendrick GA, Holmes KW, Niel KPV (2008) Multi-scale spatial patterns of three seagrass species with different growth dynamics. Ecography 31:191–200. doi:10.1111/j.0906-7590.2008.5252.x

    Article  Google Scholar 

  • Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob Ecol Biogeogr 17:59–71. doi:10.1111/j.1466-8238.2007.00379.x

    Article  Google Scholar 

  • Koch EW, Ackerman JD, Verduin J, van Keulen M (2006) Fluid dynamics in seagrass ecology from molecules to ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Netherlands, pp 193–225

    Google Scholar 

  • Komatsu T, Umezawa Y, Nakakoka M, Supanwanid C, Kanamoto Z (2004) Water flow and sediment in Enhalus acoroides and other seagrass beds in the Andaman Sea, off Khao Bae Na, Thailand. Coast Mar Sci 29:63–68

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967. doi:10.2307/1941447

    Article  Google Scholar 

  • Marbá N, Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Mar Ecol Prog Ser 174:269–280. doi:10.3354/meps174269

    Article  Google Scholar 

  • Nakaoka M, Noda T (2004) Special feature: multiple spatial scale approaches in population and community ecology. Popul Ecol 46:103–104. doi:10.1007/s10144-004-0186-8

    Article  Google Scholar 

  • O’Neil RV, King AW (1998) Homage to St. Michael: or, why are there so many books on scale? In: Peterson DL, Parker VT (eds) Ecological scale. Columbia University Press, New York, pp 3–15

    Google Scholar 

  • Pascual M, Guichard F (2005) Criticality and disturbance in spatial ecological systems. Trends Ecol Evol 20:88–95. doi:10.1016/j.tree.2004.11.012

    Article  PubMed  Google Scholar 

  • Pech D, Ardisson P, Bourget E, Condal AR (2007) Abundance variability of benthic intertidal species: effects of changing scale on patterns perception. Ecography 30:637–648. doi:10.1111/j.2007.0906-7590.04935.x

    Article  Google Scholar 

  • Perry JN, Gonzalez-Andujar JL (1993) Dispersal in a metapopulation neighbourhood model of an annual plant with a seedbank. J Ecol 81:453–463. doi:10.2307/2261524

    Article  Google Scholar 

  • Robbins BD, Bell SS (2000) Dynamics of a subtidal seagrass landscape: seasonal and annual change in relation to water depth. Ecology 81:1193–1205

    Article  Google Scholar 

  • Sanbanze Restoration Planning Committee (2004) Proposal for the restoration of Sanbanze (Summary), Chiba prefecture, Chiba, Japan

  • Schneider DC (2001) The rise of the concept of scale in ecology. Bioscience 51:545–553. doi:10.1641/0006-3568(2001)051[0545:TROTCO]2.0.CO;2

    Article  Google Scholar 

  • Short FT, Wyllie-Echeverria S (1996) Natural and human-induced disturbance of seagrasses. Environ Conserv 23:17–27

    Article  Google Scholar 

  • Sintes T, Marbá N, Duarte CM, Kendrick GA (2005) Nonlinear processes in seagrass colonization explained by simple clonal growth rules. Oikos 108:165–175. doi:10.1111/j.0030-1299.2005.13331.x

    Article  Google Scholar 

  • Turner MG, Tinker DB, Gergel SE, Chapin FSIII (2002) Landscape disturbance: location, pattern and dynamics. In: Gergel SE, Turner MG (eds) Learning landscape ecology: a practical guide to concepts and techniques. Springer, New York, pp 147–165

    Google Scholar 

  • Vermaat JE, Rollon RN, Lacap CDA, Billot C, Alberto F, Nacorda HME, Wiegman F, Terrados J (2004) Meadow fragmentation and reproductive output of the SE Asian seagrass Enhalus acoroides. J Sea Res 52:321–328. doi:10.1016/j.seares.2004.04.002

    Article  Google Scholar 

  • Wickham JD, Rhtters KH (1995) Sensitivity of landscape metrics to pixel size. Int J Remote Sens 16:3585–3594. doi:10.1080/01431169508954647

    Article  Google Scholar 

  • Wu J, Shen W, Sun W, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landsc Ecol 17:761–782. doi:10.1023/A:1022995922992

    Article  Google Scholar 

  • Yamakita T, Nakaoka M, Kondoh A, Ishii M, Shoji Y (2005) Long-term spatial dynamics of a seagrass bed on Futtsu tidal flat in Tokyo Bay. Jpn J Conserv Ecol 10:129–138 (in Japanese with English abstract)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Mituhiro Ishii, Akihiko Kondoh, and Futtsu Fisherman Union for their cooperation during the course of the study. We also appreciate anonymous reviewers for improving this paper. This research was partly supported by the Grant-in-Aids from the Ministry of Education, Science, Culture and Sports, Japan (No. 18201043) and the JSPS Fellowship program (No. 192341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehisa Yamakita.

Additional information

This manuscript was submitted for the special feature based on the symposium in Jozankei, Hokkaido, held on 20 October 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamakita, T., Nakaoka, M. Scale dependency in seagrass dynamics: how does the neighboring effect vary with grain of observation?. Popul Ecol 51, 33–40 (2009). https://doi.org/10.1007/s10144-008-0119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-008-0119-z

Keywords

Navigation