Skip to main content
Log in

Effects of crustal stresses on fluid transport in fractured rock: case studies from northeastern and southwestern USA

  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The link between stress and hydrologic properties was examined at two sites that are distinguished by different rock types and different stress states. This investigation is based upon the analysis and interpretation of geophysical logs obtained in water wells at the two locations. At the northeast site (Newark Basin), the hydrologic characteristics of sedimentary rocks are dependent upon the relationship to the current regional stress field of two primary types of orthogonal features that serve as preferential pathways for fluid flow. Subhorizontal bedding-plane partings are highly transmissive near the surface and delineate transversely isotropic fluid flow at shallow depths. With increasing depth, the subhorizontal planes become less dominant and steeply dipping fractures become more influential hydrologically. These high-angle features define anisotropic flow pathways that are preferentially oriented along strike. At the southwest site (west Texas), extrusive rocks are subjected to topographically modified tectonic and gravitational stresses that vary spatially within a valley setting. The attendant changes in stress invariants cause fracture connectivity within the rock mass to systematically increase with depth along the valley flanks, but to remain relatively low in the central valley. The degree of fracture connectivity predicted within this valley configuration is consistent with variations in transmissivity determined at several well locations. In each of these cases, the idealized understanding of the hydrologic system is enhanced by considering the effects of regional and local stresses that act upon the fractured-rock aquifer.

Résumé

La relation entre les propriétés hydrologiques et la contrainte est étudiée sur deux sites distincts par les types de roches et leurs états de contraintes différents. Cette étude est basée sur l'analyse et l'interprétation de logs géophysiques obtenus dans des puits en deux endroits. Sur le site nord-est (le bassin de Newark), les caractéristiques hydrologiques des roches sédimentaires dépendent de la relation entre le champ actuel de contraintes régionales et les deux types primaires de plans orthogonaux conduisant préférentiellement les écoulements souterrains. Les plans de stratification subhorizontaux sont très transmissifs près de la surface et déterminent transversalement un écoulement isotrope aux faibles profondeurs. Avec l'accroissement de la profondeur, les plans subhorizontaux deviennent moins importants et les fractures à fort pendage jouent un rôle hydrologique plus déterminant. Ces plans sécants à grands angles définissent des écoulements anisotropes préférentiels selon leur orientation. Sur le site sud-ouest (Texas occidental), des roches effusives ont contribué à modifier topographiquement les contraintes tectoniques et gravitationnelles qui varient spatialement selon la disposition de la vallée. Les changements associés aux invariants de la contrainte sont la cause d'un accroissement systématique de la connectivité de fractures de la masse rocheuse en profondeur sur les flancs de la vallée; la connectivité reste cependant relativement faible au centre. Le degré de connectivité de fracture prédit dans cette configuration de la vallée est compatible avec les variations de transmissivité déterminées dans des puits en plusieurs endroits. Dans chacun de ces cas, notre compréhension théorique du système hydrologique est améliorée par la prise en compte des effets des contraintes régionales et locales qui agissent sur l'aquifère fracturé.

Resumen

Se examina el nexo entre los esfuerzos y las propiedades hidrológicas en dos emplazamientos que se distinguen por tener diferentes litologías y estados tensionales. La investigación está basada en el análisis e interpretación de registros geofísicos obtenidos en pozos de ambos lugares. En el emplazamiento situado al Nordeste (cuenca Newark), las características hidrológicas de las rocas sedimentarias dependen de la relación con el campo regional de esfuerzos actual de dos tipos primarios de características ortogonales que actúan como caminos preferentes de flujo. Las separaciones subhorizontales del plano de estratificación son muy transmisivas cerca de la superficie y delinean un flujo transversal isótropo a profundidades someras. A mayor profundidad, los planos subhorizontales son menos dominantes, mientras que las fracturas con buzamientos acusados se convierten en hidráulicamente más influyentes. Estas fracturas de alto ángulo definen esquemas anisótropos de flujo que se orientan preferentemente a lo largo de su dirección. En el emplazamiento del Sudoeste (oeste de Texas), las rocas extrusivas están sometidas a tensiones tectónicas modificadas por la topografía y a tensiones gravitacionales que varían espacialmente dentro del valle. Los cambios consiguientes en invariantes de los esfuerzos crean conectividades entre fracturas del macizo rocoso, que aumentan sistemáticamente con la profundidad a la largo de los flancos del valle, pero son relativamente bajas en la zona central. El grado de conectividad de las fracturas predicho con esta configuración del valle es coherente con las variaciones de transmisividad determinadas en diferentes pozos. En cada caso, nuestro conocimiento idealizado del sistema hidrológico mejora si consideramos los efectos de los esfuerzos regionales y locales que actúan en el acuífero formado por rocas fracturadas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  • Bai T, Pollard DD (2000) Fracture spacing in layered rocks: a new explanation based on the stress transition. J Struct Geol 22:43–47

    Article  Google Scholar 

  • Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Sci Geomech Abstr 20:249–268

    Google Scholar 

  • Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23(8):683–686

    Article  Google Scholar 

  • Beeler NM, Hickman SH (2001) A note on contact stress and closure in models of rock joints and faults. Geophys Res Lett 28:607–610

    Google Scholar 

  • Bell JS, Babcock EA (1986) The stress regime of the Western Canadian Basin and implications for hydrocarbon production. Bull Can Petrol Geol 34:364–378

    Google Scholar 

  • Bell JS, Gough DI (1979) Northeast–southwest compressive stress in Alberta: evidence from oil wells. Earth Planet Sci Lett 45:475–482

    Article  Google Scholar 

  • Berkowitz B, Naumann C, Smith L (1994) Mass transfer at fracture intersections: an evaluation of mixing models. Water Resour Res 30:1765–1773

    Google Scholar 

  • Brown SR, Scholz CH (1986) Closure of rock joints. J Geophys Res 89:4939–4948

    Google Scholar 

  • Bruno MS, Bovberg CA, Nakagawa FM (1991) Anisotropic stress influence on the permeability of weakly-cemented sandstones. In: Roegiers E (ed) Rock mechanics as a multi-disciplinary science. Balkema, Rotterdam, pp 375–383

  • Chen WF, Saleeb AF (1982) Constitutive equations for engineering materials, vol 1. Wiley, New York

  • Clemo T, Smith L (1997) A hierarchical model for solute transport in fractured media. Water Resour Res 33:1763–1783

    Google Scholar 

  • Cook NGW (1992) Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int J Rock Mech Sci Geomech Abstr 29:198–223

    Google Scholar 

  • Dickerson PW, Muehlberger WR (eds) (1985) Structure and tectonics of Trans-Pecos Texas. West Texas Geology Society Field Conference, Publ 85-81

  • Doser DI (1998) Seismic hazards of the Rio Grande rift/Great Plains transition zone in west Texas and southern New Mexico. Seismol Res Lett 69:141

    Google Scholar 

  • Doser DI, Baker MR, Luo M, Marroquin P, Ballesteros L, Kingwell J, Diaz HL, Kaip G (1992) The not so simple relationship between seismicity and oil production in the Permian Basin, west Texas. Pure Appl Geophys 139:481–506

    Google Scholar 

  • Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Quart Appl Math 10:157–165

    Google Scholar 

  • Einstein HH, Dershowitz WS (1990) Tensile and shear fracturing in predominantly compressive stress fields a review. Eng Geol 29:149–172

    Google Scholar 

  • Ferrill DA, Winterle J, Wittmeyer G, Sims D, Colton S, Armstrong A (1999) Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today 9(5):1–8

    Google Scholar 

  • Froelich AJ, Robinson GR Jr (eds) (1988) Studies of the Early Mesozoic basins of the eastern United States. US Govt Printing Office. US Geological Survey Bull 1776

  • Gentier S, Hopkins D, Riss J (2000) Role of fracture geometry in the evolution of flow paths under stress. In: Dynamics of fluids in fractured rock. AGU Geophysical Monograph 122, Washington, DC, pp 169–184

  • Hearst JR, Nelson PH, Paillet FL (2000) Well logging for physical properties, 2nd edn. Wiley, New York

  • Heffer KJ, Fox RJ, McGill CA, Koutsabeloulis NC (1995) Novel techniques show links between reservoir flow directionality, Earth stress, fault structure and geomechanical changes in mature water floods. Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, Texas, pp 77–87

  • Hillis RR (1998) The influence of fracture stiffness and the in situ stress field on the closure of natural fractures. Petrol Geosci 4:57–65

    Google Scholar 

  • Houghton HF (1990) Hydrogeology of the early Mesozoic rocks of the Newark Basin, NJ. In: Kroll RL, Brown JO (eds) Proc Aspects of Groundwater in New Jersey. Geological Association of New Jersey 7th Annual Meeting, New Jersey, E1-E36

  • Hudson JA, Harrison JP (1997) Engineering rock mechanics: an introduction to the principles. Elsevier, New York

    Google Scholar 

  • Jaeger JC, Cook NGW (1977) Fundamentals of rock mechanics, 2nd edn. Wiley, New York

  • LBG-Guyton Assoc (1998) Preliminary evaluation of potential groundwater supply development for the city of Alpine, Texas. LBG-Guyton Assoc. Texas

  • Littleton RT, Audsley GL (1957) groundwater geology of the Alpine area, Brewster, Jeff Davis and Presidia Counties. Texas Board Water Eng Bull 5712

  • Long JCS, Aydin A, Brown SR, Einstein HH, Hestir K, Hsieh PA, Myer LR, Nolte KG, Norton DL, Olsson OL, Paillet FL, Smith JL, Thomsen L (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academy Press, Washington, DC

    Google Scholar 

  • Lyttle PT, Epstein JB (1987) Geologic map of the Newark 1x2° quadrangle. New Jersey, Pennsylvania, and New York, 1:250,000 USGS Misc. Investigations Series Map I-1715

  • McAnulty WN (1950) Geology and groundwater resources of Alpine and adjacent territory, Brewster County, Texas. Report for the City of Alpine

  • Michael AJ (1984) Determination of stress from slip data. J Geophys Res 89:11517–11526

    Google Scholar 

  • Michalski A (1990) Hydrogeology of the Brunswick (Passaic) Formation and implications for groundwater monitoring practice. Ground Water Monitor Rev 10:134–143

    CAS  Google Scholar 

  • Michalski A, Britton R (1997) The role of bedding fractures in the hydrogeology of sedimentary bedrock evidence from the Newark Basin, New Jersey. Ground Water 35:318–327

    CAS  Google Scholar 

  • Moreno L, Neretnieks I (1993) Fluid flow and solute transport in a network of channels. J Contam Hydrol 14:163–192

    CAS  Google Scholar 

  • Morin RH, Savage WZ (2002) Topographic stress perturbations in Southern Davis Mountains, west Texas: II. Hydrogeologic implications. J Geophys Res (in press)

    Google Scholar 

  • Morin RH, Carleton GB, Poirier S (1997) Fractured-aquifer hydrogeology from geophysical logs; the Passaic Formation, New Jersey. Ground Water 35:328–338

    CAS  Google Scholar 

  • Morin RH, Senior LA, Decker ER (2000) Fractured-aquifer hydrogeology from geophysical logs: Brunswick Group and Lockatong Formation, Pennsylvania. Ground Water 38:182–192

    CAS  Google Scholar 

  • Niemi A, Konitio K, Kuusela-Lahtinen A (2000) Hydraulic characterization and upscaling of fracture networks based on multiple-scale well test data. Water Resour Res 36:3481–3497

    Google Scholar 

  • Olsen PE (1980) The latest Triassic and early Jurassic formations of the Newark Basin (eastern North America, Newark Supergroup): stratigraphy, structure, and correlation. New Jersey Acad Sci Bull 25:25–51

    Google Scholar 

  • Ouillon G, Castaing C, Sornette D (1996) Hierarchical geometry of faulting. J Geophys Res 101:5477–5487

    Google Scholar 

  • Park Y-J, Lee K-K, Berkowitz B (2001) Effects of junction transfer characteristics on transport in fracture networks. Water Resour Res 37:909–923

    Google Scholar 

  • Parker RA, Houghton HF, McDowell RC (1988) Stratigraphic framework and distribution of early Mesozoic rocks of the Northern Newark Basin, New Jersey and New York. In: Froelich AJ, Robinson GR Jr (eds) Studies of the Early Mesozoic basins of the Eastern United States. USGS. Bull 1776:31–39

    Google Scholar 

  • Pollard DD, Aydin A (1988) Progress in understanding jointing over the past century. Geol Soc Am Bull 100:1181–1204

    Article  Google Scholar 

  • Price JG, Henry CD (1985) Summary of Tertiary stress orientations and tectonic history of Trans-Pecos Texas. In: Dickerson PW, Muehlberger WR (eds) Structure and tectonics of Trans-Pecos Texas. West Texas Geological Society Field Conference Publ 85-81, pp 149–151

  • Priest SD, Hudson JA (1976) Discontinuity spacings in rock. Int J Rock Mech Mineral Sci Geomech Abstr 13:135–148

    Google Scholar 

  • Renshaw CE (2000) Fracture spatial density and the anisotropic connectivity of fracture networks. In: Dynamics of fluids in fractured rock. AGU Geophysical Monograph 122, Washington, DC, pp 203–211

  • Savage WZ, Morin RH (2002) Topographic stress perturbations in Southern Davis Mountains, west Texas: I. Polarity reversal of principal stresses. J Geophys Res (in press)

    Google Scholar 

  • Savage WZ, Swolfs HS (1986) Tectonic and gravitational stress in long symmetric ridges and valleys. J Geophys Res 91:3677–3685

    Google Scholar 

  • Savage WZ, Swolfs HS (1987) SLIP-A FORTRAN computer program for computing the potential for sliding on arbitrarily oriented weakness planes in triaxial stress states. USGS Open-file Report 87-82

  • Savage WZ, Swolfs HS, Powers PS (1985) Gravitational stresses in long symmetric ridges and valleys. Int J Rock Mech Mining Sci Geomech Abstr 22:291–302

    Google Scholar 

  • Sayers CM (1990) Stress-induced fluid flow anisotropy in fractured rock. Trans Porous Media 5:287–297

    Google Scholar 

  • Schlische RW (1992) Structural and stratigraphic development of the Newark extensional basin, eastern North America: evidence for the growth of the basin and its bounding structures. Geol Soc Am Bull 104:1246–1263

    Article  Google Scholar 

  • Seeber L, Armbruster JG, Kim WY, Barstow N, Scharnberger C (1998) The 1994 Cacoosing Valley earthquakes near Reading Pennsylvania: a shallow rupture triggered by quarry unloading. J Geophys Res 103:24505–24521

    Google Scholar 

  • Simpson G, Guéguen Y, Schneider F (2001) Permeability enhancement due to micro-crack dilatancy in the damage regime. J Geophys Res 106:3999–4016

    Google Scholar 

  • Stone JR, Barlow PM, Starn JJ (1996) Geohydrology and conceptual model of a groundwater flow system near a Superfund site in Cheshire, Connecticut. US Geological Survey Open-File Rep 96-162

  • Terzaghi R (1965) Sources of error in joint surveys. Geotechnique 15:287–304

    Google Scholar 

  • Vecchioli J, Carswell LD, Kasabach HF (1969) Occurrence and movement of ground water in the Brunswick Shale at a site near Trenton, New Jersey. US Geological Survey Professional Paper 650-B, B154-B157

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of the cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024

    Google Scholar 

  • Zoback ML, Zoback MD (1989) Tectonic stress field of the conterminous United States. In: Parker LC, Mooney WD (eds) Geophysical framework of North America. Mem Geol Soc Am 172:523–539

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to C. Neuzil and O. Stephansson for their thorough and insightful reviews that improved this manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Z. Savage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morin, R.H., Savage, W.Z. Effects of crustal stresses on fluid transport in fractured rock: case studies from northeastern and southwestern USA. Hydrogeology Journal 11, 100–112 (2003). https://doi.org/10.1007/s10040-002-0235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-002-0235-3

Keywords

Navigation