Skip to main content
Log in

Three dimensional fabric evolution of sheared sand

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Shibli, K., Macari, E., Sture, S.: Digital imaging techniques for the assessment of homogeneity of granular materials. Transportation Research-Record No. 1526, pp. 80–91 (1996)

  2. Alshibli K.A., Alramahi B.A.: Microscopic evaluation of strain distribution in granular materials during shear. J. Geotech. Geoenviron. Eng. 132(1), 483–494 (2006)

    Article  Google Scholar 

  3. Anandarajah A.: Sliding and rolling constitutive theory for granular materials. J. Eng. Mech. 13(6), 665–680 (2004)

    Article  Google Scholar 

  4. Anandarajah A., Kuganenthira N.: Some aspects of fabric anisotropy of soil. Geotechnique 45(1), 69–81 (1995)

    Article  Google Scholar 

  5. Arthur J.R.F., Dunstan T.: Radiography measurements of particle packing. Nature 223(2), 464–468 (1969)

    Article  ADS  Google Scholar 

  6. Arthur J.R.F., Dunstan T.: Radiological techniques developed to describe particle packing. Powder Technol. 3, 195–207 (1970)

    Article  Google Scholar 

  7. Aste T.: Variations around disordered close packing. J. Phys. Condens. Matter 17, S2361–S2390 (2005)

    Article  ADS  Google Scholar 

  8. Aste T., Saadatfar M., Sakellariou A., Senden T.J.: Investigating the geometrical structure of disordered sphere packings. Phys. A 339, 16–23 (2004)

    Article  MathSciNet  Google Scholar 

  9. Aste T., Saadatfar M., Senden T.J.: Geometrical structure of disordered sphere packings. Phys. Rev. E 71, 061301 (2005)

    Article  ADS  Google Scholar 

  10. Bardet J.P.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18, 159–182 (1994)

    Article  Google Scholar 

  11. Batiste S.N., Alshibli K.A., Sture S., Lankton M.: Shear band characterization of triaxial sand specimens using computed tomography. Geotech. Test. J. 27(6), 568–579 (2004)

    Google Scholar 

  12. Chang C.S., Matsushima T., Lee X.: Heterogeneous strain and bonded granular structure change in triaxial specimen studied by computer tomography. J. Eng. Mech. 129(11), 1295–1307 (2003)

    Article  Google Scholar 

  13. Desrues J., Chambon R., Mokni M., Mazerolle F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique 46(3), 529–546 (1996)

    Article  Google Scholar 

  14. Frost J.D., Kuo C.Y.: Automated determination of the distribution of local void ratio from digital images. Geotech. Test. J. 19(2), 107–117 (1996)

    Article  Google Scholar 

  15. Hasan, A., Alshibli, K., Heinrich, J., Rivers, M., Eng, P.: Visualization of Shear Band in Sand Using Synchrotron Micro-Tomography. In: Proceedings of GeoCongress 2008, Characterization, Monitoring, and Modeling of GeoSystems GSP 179, pp. 1028–1035. ASCE, New Orleans (2008)

  16. Kanatani K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Konagai, K., Rangelow, P.: Real-time observation of dynamic changes in the fabric of granular material structures through Laser-Aided Tomography. In: Proceedings of the 10th European Conference Earthquake Engineering, Vienna, pp. 459–465 (1994)

  18. Konagai K., Tamura C., Rangelow P., Matsushima T.: Laser-aided tomography: a tool for visualization of changes in the fabric of granular assemblage. Struct. Eng. Earthq. Eng. 9(3), 193–201 (1992)

    Google Scholar 

  19. Matsushima T., Hidetaka S., Yosuke T., Yasuo Y.: Grain rotation versus continuum rotation during shear deformation of granular. Soils Found. 43(4), 95–106 (2003)

    Article  Google Scholar 

  20. Matsushima T., Uesugi K., Nakano T., Tsuchiyama A.: Visualization of grain motion inside a triaxial specimen by micro X-ray CT at SPring-8. In: Desrues, J., Viggiani, G., Besuelle, P. (eds) Advances in X-ray Tomography for Geomaterials, pp. 255–261. ISTE Ltd., London (2006)

    Chapter  Google Scholar 

  21. Mitchell J., Soga K.: Fundametals of Soil Behavior. 3rd edn. Wiley, Hoboken (2005)

    Google Scholar 

  22. Mueth D.M., Debregeas G.F., Karczmar G.S., Eng P.J., Nagel S.R., Jaeger H.M.: Signatures of granular microstructure in dense shear flows. Nature 406, 385–389 (2000)

    Article  ADS  Google Scholar 

  23. Nemat-Nasser S., Okada N.: Radiographic and microscopic observation of shear bands in granular materials. Geotechnique 51(9), 753–765 (2001)

    Article  Google Scholar 

  24. Ng, T., Aube, D., Altobelli, S.: 3-D MRI Experiment of Granular Material. In: Proceedings of Symposium on Mechanical Deformation and Flow of Particulate Materials, pp. 189–198. Evanston, Illinois (1997)

  25. Ng, T., Hu, C., Altobelli, S.: Void Distributions in Samples of a Granular Material. In: Proceedings of GeoShanghai, Site and Geomaterial Characterization, pp. 104–111. Shanghai (2006)

  26. Oda M.: The mechanics of fabric changes during compressional deformation of sand. Soils Found. 12(2), 1–18 (1972)

    Article  Google Scholar 

  27. Oda M., Iwashita K., Kakiuchi T.: Importance of Particle Rotation in the Mechanics of Granular Materials. Powder & Grains 97, Balkema, Rotterdam (1997)

    Google Scholar 

  28. Oda M., Kazama H.: Microstructure in shear band and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(1), 1–17 (1998)

    Article  Google Scholar 

  29. Oda M., Takemura T., Takahashi M.: Microstructure in shear band observed by microfocus X-ray computed tomography. Geotechnique 54(8), 335–539 (2004)

    Google Scholar 

  30. Oh W., Lindquist W.: Image thresholding by indicator Kriging. IEEE Trans. Pattern Anal. Mach. Intell. 21(7), 590–602 (1999)

    Article  Google Scholar 

  31. Rowe P.W.: The stress-dilatancy relation for static equilibrium ofan assembly of particles in contact. Proc. R. Soc. A 269, 500–527 (1962)

    Article  ADS  Google Scholar 

  32. Shodja H.M., Nezami E.G.: A micromechanical study of rolling and sliding in assemblies of oval granules. Int. J. Numer. Anal. Methods Geomech. 27, 403–424 (2003)

    Article  MATH  Google Scholar 

  33. Tordesillas A., Walsh D.C.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124, 106–111 (2002)

    Article  Google Scholar 

  34. Thompson K.E., Willson C.S., Zhang W.: Quantitative computer reconstruction of particulate materials from microtomography images. Powder Technol. 163, 169–182 (2006)

    Article  Google Scholar 

  35. Watkins J.C., Fukushima E.: High-pass bird-cage coil for nuclear magnetic resonance. Rev. Sci. Instrum. 59, 926–929 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alsidqi Hasan.

Electronic supplementary material

ESM (MP4 127 kb)

ESM (MP4 136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasan, A., Alshibli, K. Three dimensional fabric evolution of sheared sand. Granular Matter 14, 469–482 (2012). https://doi.org/10.1007/s10035-012-0353-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0353-0

Keywords

Navigation