Skip to main content
Log in

Panurgines, novel antimicrobial peptides from the venom of communal bee Panurgus calcaratus (Hymenoptera: Andrenidae)

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Three novel antimicrobial peptides (AMPs), named panurgines (PNGs), were isolated from the venom of the wild bee Panurgus calcaratus. The dodecapeptide of the sequence LNWGAILKHIIK-NH2 (PNG-1) belongs to the category of α-helical amphipathic AMPs. The other two cyclic peptides containing 25 amino acid residues and two intramolecular disulfide bridges of the pattern Cys8–Cys23 and Cys11–Cys19 have almost identical sequence established as LDVKKIICVACKIXPNPACKKICPK-OH (X=K, PNG-K and X=R, PNG-R). All three peptides exhibited antimicrobial activity against Gram-positive bacteria and Gram-negative bacteria, antifungal activity, and low hemolytic activity against human erythrocytes. We prepared a series of PNG-1 analogs to study the effects of cationicity, amphipathicity, and hydrophobicity on the biological activity. Several of them exhibited improved antimicrobial potency, particularly those with increased net positive charge. The linear analogs of PNG-K and PNG-R having all Cys residues substituted by α-amino butyric acid were inactive, thus indicating the importance of disulfide bridges for the antimicrobial activity. However, the linear PNG-K with all four cysteine residues unpaired, exhibited antimicrobial activity. PNG-1 and its analogs induced a significant leakage of fluorescent dye entrapped in bacterial membrane-mimicking large unilamellar vesicles as well as in vesicles mimicking eukaryotic cell membrane. On the other hand, PNG-K and PNG-R exhibited dye-leakage activity only from vesicles mimicking bacterial cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiche M, Galanth C (2011) Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides. Curr Pharm Biotechnol 12:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Argiolas A, Pisano JJ (1985) Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee Megabombus pennsylvanicus. J Biol Chem 260:1437–1444

    CAS  PubMed  Google Scholar 

  • Asthana N, Yadav SP, Ghosh JK (2004) Dissection of antimicrobial and toxic activity of melittin. J Biol Chem 279:55042–55050

    Article  CAS  PubMed  Google Scholar 

  • Backlund B-M, Wikander G, Peeters T, Graslund A (1994) Induction of secondary structure in the peptide hormone motilin by interaction with phospholipid vesicles. Biochim Biophys Acta 1190:337–344

    Article  CAS  PubMed  Google Scholar 

  • Baltzer SA, Brown MH (2011) Antimicrobial peptides—promising alternatives to conventional antibiotics. J Mol Microbiol Biotechnol 20:228–235

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg L-O, Merres J, Albrecht L-L, Varoga D, Pufe T (2012) Antimicrobial peptides: multifunctional drugs for different applications. Polymers 4:539–560

    Article  Google Scholar 

  • Čeřovský V, Slaninová J, Fučík V, Hulačová H, Borovičková L, Ježek R, Bednárová L (2008a) New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 29:992–1003

    Article  PubMed  Google Scholar 

  • Čeřovský V, Hovorka O, Cvačka J, Voburka Z, Bednárová L, Borovičková L, Slaninová J, Fučík V (2008b) Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. ChemBioChem 9:2815–2821

    Article  PubMed  Google Scholar 

  • Čeřovský V, Buděšínský M, Hovorka O, Cvačka J, Voburka Z, Slaninová J, Borovičková L, Fučík V, Bednárová L, Votruba I, Straka J (2009) Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). ChemBioChem 10:2089–2099

    Article  PubMed  Google Scholar 

  • Čeřovský V, Slaninová J, Fučík V, Monincová L, Bednárová L, Maloň P, Štokrová J (2011) Lucifensin, a novel insect defensin of medicinal maggots: synthesis and structural study. ChemBioChem 12:1352–1361

    Article  PubMed  Google Scholar 

  • Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Chou H-T, Wen H-W, Kuo T-Y, Lin C-C, Chen W-J (2010) Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides 31:1811–1820

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Epand RF (2009) Domains in bacterial membranes and the action of antimicrobial agents. Mol BioSyst 5:580–587

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Epand RF (2011) Bacterial membrane lipids in the action of antimicrobial targets. J Pept Sci 17:298–305

    Article  CAS  PubMed  Google Scholar 

  • Epand RF, Savage PB, Epand RM (2007) Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim Biophys Acta 1768:2500–2509

    Article  CAS  PubMed  Google Scholar 

  • Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Centr Eur J Biol 2:1–33

    Article  CAS  Google Scholar 

  • Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Vasil AI, Hale JD, Hancock REW, Vasil ML, Hodges RS (2008) Effect of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers (Peptide Science) 90:369–383

    Article  CAS  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  PubMed  Google Scholar 

  • Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K (2004) Cardiolipin domains in Bacillus subtilis Marburg membranes. J Bacteriol 186:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Hisada M, Fontana R, Lorenzi CCB, Naoki H, Itagaki Y, Miwa A, Kawai N, Nakata Y, Yasuhara T, Neto JR, de Azevedo WF Jr, Palma MS, Nakajima T (2001) Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim Biophys Acta 1550:70–80

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Hisada M, Naoki H, Itagaki Y, Fontana R, Rangel M, Oliveira JS, Cabrera MPS, Neto JR, Hide I, Nakata Y, Yasuhara T, Nakajima T (2006) Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenes rubronotatus. Peptides 27:2624–2631

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Rangel M, Oliveira JS, dos Santos Cabrera MP, Fontana R, Hirata IY, Hide I, Nakata Y, Mori K, Kawano M, Fuchino H, Sekita S, Neto JR (2007) Decoralin, a novel linear cationic α-helical peptide from the venom of the solitary eumenine wasps Oreumenes decoratus. Peptides 28:2320–2327

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 60:2651–2668

    Article  CAS  PubMed  Google Scholar 

  • Labbé-Julié C, Granier C, Albericio F, Defendini M-L, Ceard B, Rochat H, Van Rietschoten J (1991) Binding and toxicity of apamin. Characterization of the active site. Eur J Biochem 196:639–645

    Article  Google Scholar 

  • Lohner K, Blondele SS (2005) Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. Comb Chem High T Scr 8:241–256

    CAS  Google Scholar 

  • Lyu PC, Sherman JC, Chen A, Kallenbach NR (1991) α-Helix stabilization by natural and unnatural amino acids with alkyl side chains. Proc Natl Acad Sci USA 88:5317–5320

    Article  CAS  PubMed  Google Scholar 

  • Monincová L, Slaninová J, Voburka Z, Hovorka O, Fučík V, Borovičková L, Bednárová L, Buděšínský M, Straka J, Čeřovský V (2009) Novel biologically active peptides from the venom of the solitary bee Macropis fulvipes (Hymenoptera: Melittidae). In: Slaninová J (ed) Collection symposium series, institute of organic chemistry and biochemistry, vol 11. Academy of Sciences of the Czech Republic, Prague, pp 77–80

    Google Scholar 

  • Monincová L, Buděšínský M, Slaninová J, Hovorka O, Cvačka J, Voburka Z, Fučík V, Borovičková L, Bednárová L, Straka J, Čeřovský V (2010) Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids 39:763–775

    Article  PubMed  Google Scholar 

  • Monincová L, Slaninová J, Fučík V, Hovorka O, Voburka Z, Bednárová L, Maloň P, Štokrová J, Čeřovský V (2012) Lasiocepsin, a novel cyclic antimicrobial peptide from the venom of eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). Amino Acids 43:751–761

    Article  PubMed  Google Scholar 

  • Oyston PCF, Fox MA, Richards SJ, Clark GC (2009) Novel peptide therapeutics for treatment of infections. J Med Microb 58:977–987

    Article  CAS  Google Scholar 

  • Pazderková M, Kočišová E, Pazderka T, Maloň P, Kopecký Jr. V, Monincová L, Čeřovský V, Bednárová L (2012) Antimicrobial peptide from the eusocial bee Halictus sexcinctus. Interacting with model membranes. Spectroscopy Int J 27:497–502

    Article  Google Scholar 

  • Rohl CA, Baldwin RL (1998) Deciphering rules of helix stability in peptides. Methods Enzymol 295:1–26

    Article  CAS  PubMed  Google Scholar 

  • Shailesh S, Neelam S, Sandeep K, Gupta GD (2009) Liposomes: a review. J Pharm Res 2:1163–1167

    CAS  Google Scholar 

  • Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51:149–177

    Article  CAS  PubMed  Google Scholar 

  • Terashima H, Kojima S, Homma M (2008) Flagellar motility in bacteria: structure and function of flagellar motor. Int Rew Cell Moll Biol 270:39–85

    Article  CAS  Google Scholar 

  • Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers (Peptide Science) 80:717–735

    Article  CAS  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers (Peptide Science) 55:4–30

    Article  CAS  Google Scholar 

  • Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helvetica 70:95–111

    Article  CAS  Google Scholar 

  • Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937

    Article  CAS  PubMed  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  PubMed  Google Scholar 

  • Wieprecht T, Dathe M, Krause M, Beyermann M, Maloy WL, MacDonnald DL, Bienert M (1997) Modulation of membrane activity of amphipathic, antimicrobial peptides by slight modification of hydrophobic moment. FEBS Lett 417:135–140

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239:27–34

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharm Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176

    Article  CAS  PubMed  Google Scholar 

  • Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Charles University no. 645012, Czech Science Foundation, Grant no. 203/08/0536, and by research project RVO 61388963 of the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. We thank our technical assistants Mrs. Hana Hulačová and Mrs. Lenka Borovičková for their help with peptide synthesis. We also thank Gale A. Kirking at English Editorial Services, s.r.o. for assistance with the English.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Čeřovský.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2901 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čujová, S., Slaninová, J., Monincová, L. et al. Panurgines, novel antimicrobial peptides from the venom of communal bee Panurgus calcaratus (Hymenoptera: Andrenidae). Amino Acids 45, 143–157 (2013). https://doi.org/10.1007/s00726-013-1482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1482-4

Keywords

Navigation