Skip to main content

Advertisement

Log in

Natural and forced air temperature variability in the Labrador region of Canada during the past century

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Evaluation of Labrador air temperatures over the past century (1881–2011) shows multi-scale climate variability and strong linkages with ocean-atmospheric modes of variability and external forcings. The Arctic Oscillation, Atlantic Multidecadal Oscillation, and El Nino Southern Oscillation are shown to be the dominant seasonal and interannual drivers of regional air temperature variability for most of the past century. Several global climate models show disagreement with observations on the rate of recent warming which suggests that models are currently unable to reproduce regional climate variability in Labrador air temperature. Using a combination of empirical statistical modeling and global climate models, we show that 33 % of the variability in annual Labrador air temperatures over the period 1881–2011 can be explained by natural factors alone; however, the inclusion of anthropogenic forcing increases the explained variance to 65 %. Rapid warming over the past 17 years is shown to be linked to both natural and anthropogenic factors with several anomalously warm years being primarily linked to recent anomalies in the Arctic Oscillation and North Atlantic sea surface temperatures. Evidence is also presented that both empirical statistical models and global climate models underestimate the regional air temperature response to ocean salinity anomalies and volcanic eruptions. These results provide important insight into the predictability of future regional climate impacts for the Labrador region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2) 1850–2004. J Clim 19:5816–5842

    Article  Google Scholar 

  • Allard M, Wang B, Pilon JA (1995) Recent cooling along the southern shore of Hudson Strait, Quebec, Canada, documented from permafrost temperature measurements. Arct Alpine Res 27:157–166

    Article  Google Scholar 

  • Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38, L05805

    Google Scholar 

  • Bamber J, van den Broeke M, Ettema J, Lenaerts J, Rignot E (2012) Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys Res Lett 39, L19501

    Google Scholar 

  • Banfield CE, Jacobs JD (1998) Regional patterns of temperature and precipitation for Newfoundland and Labrador during the past century. Can Geogr 42:354–364

    Article  Google Scholar 

  • Belkin IM (2004) Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophys Res Lett 31:L0830

    Google Scholar 

  • Belkin I, Levitus S, Antonov J, Malmberg S (1998) “Great Salinity Anomalies” in the North Atlantic. Prog Oceanogr 41:1–68

    Article  Google Scholar 

  • Brown RJE (1979) Permafrost distribution in the southern part of the discontinuous zone in Quebec and Labrador. Geogr Phys Quatern 33:279–289

    Google Scholar 

  • Brown BR, Lemay M, Allard M, Barrand NE, Barrette C, Bégin Y, Bell T, Bernier M, Bleau S, Chau-mont D, Dibike Y, Frigon A, Leblanc P, Paquin D, Sharp MJ, Way R (2012) Climate variability and change in the Canadian Eastern Subarctic IRIS region (Nunavik and Nunatsiavut). In: Brown BR, Lemay M, Allard M, Barrand NE, Barrette C, Bégin Y, Bell T, Bernier M, Bleau S, Chau-mont D, Dibike Y, Frigon A, Leblanc P, Paquin D, Sharp MJ, Way R, Allard M, Nunavik LM, Nunatsiavut: From science to policy (eds) An Integrated Regional Impact Study (IRIS) of climate change and modernization. ArcticNet Inc., Quebec City, pp 57–93

    Google Scholar 

  • Chylek P, Dubey MK, Lesins G, Li J, Hengartner N (2013) Imprint of the Atlantic multi-decadal oscillation and Pacific decadal oscillation and Pacific decadal oscillation on southwestern US climate: past, present and future. Clim Dyn. doi:10.1007/s00382-013-1933-3

    Google Scholar 

  • Chylek P, Klett J, Lesins G, Dubey MK, Hengartner N (2014) The Atlantic Multi-decadal Oscillation as a dominant factor of oceanic influence on climate. Geophys Res Lett. doi:10.1002/2014GL059274

    Google Scholar 

  • Clette F, Berghmans D, Vanlommel P, Van der Linden RAM, Koeckelenbergh A, Wauters L (2007) From the Wolf number to the International Sunspot Index: 25 years of SIDC. Adv Space Res 40:919–928

    Article  Google Scholar 

  • Cohen J, Foster J, Barlow M, Saito K, Jones J (2010) Winter 2009–2010: a case study of an extreme Arctic Oscillation event. Geophys Res Lett 37, L17707

    Google Scholar 

  • Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007

    Article  Google Scholar 

  • Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meteorol Soc. doi:10.1002/qj.2297

    Google Scholar 

  • D’Arrigo R, Buckley B, Kaplan S, Woollett J (2003) Interannual to multidecadal modes of Labrador climate variability inferred from tree rings. Clim Dyn 20:219–228

    Google Scholar 

  • D’Arrigo R, Wilson R, Anchukaitis KJ (2013) Volcanic cooling signal in tree ring temperature records for the past millennium. J Geophys Res-Atmos 111:9000–9010

    Article  Google Scholar 

  • d’Ogreville M, Peltier WR (2007) On the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation: might they be related? Geophys Res Lett 34, L23705

    Google Scholar 

  • Demarée GR, Ogilvie AEJ (2008) The Moravian missionaries at the Labrador coast and their centuries-long contribution to instrumental meteorological observations. Clim Chang 91:423–450

    Article  Google Scholar 

  • Deser C, Holland M, Reverdin G, Timlin M (2000) Decadal variations in Labrador Sea ice cover and North Atlantic sea surface temperatures. J Geophys Res Oceans 107:1–12. doi:10.1029/2000JC000683

    Google Scholar 

  • Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Nino-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33, L08705

    Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS et al (2011) The dynamical core, physical parameterizations, basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Garcia Marquéz JR, Gruber B, Lafourcade B, Leitao PJ, Munkemuller T, McClean C, Osborne PE, Reineking B, Schroder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Elliott DL, Short SK (1979) The Northern limit of trees in labrador: a discussion. Arctic 32:201–206

    Article  Google Scholar 

  • Finnis J (2013). Projected impacts of climate change for the province of newfoundland and labrador. Office of Climate Change, Energy Efficiency and Emissions Trading, Provincial Government of Newfoundland and Labrador. Technical Report, 134 pp

  • Folland CK, Colman AW, Smith DM, Boucher O, Parker DE, Vernier JP (2013) High predictive skill of global surface temperature a year ahead. Geophys Res Lett 40:761–767

    Article  Google Scholar 

  • Foster G, Rahmstorf S (2011) Global temperature evolution 1979–2010. Environ Res Lett 6:044022

    Article  Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39, L06801

    Google Scholar 

  • Grossman I, Klotzbach PJ (2009) A review of North Atlantic modes of natural variability and their driving mechanisms. J Geophys Res-Atmos 114, D24107

    Article  Google Scholar 

  • Gruber S (2012) Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6:221–233

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48, RG4004

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449

    Article  Google Scholar 

  • Hiljmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450

    Article  Google Scholar 

  • Jones CD, Hughes JK, Bellouin N et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Mod Dev 4:543–570

    Article  Google Scholar 

  • Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res-Atmos 117, D05127

    Google Scholar 

  • Kavvada A, Ruiz-Barradas A, Nigam S (2013) AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dyn 41:1345–1364

    Article  Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc Int Conf Art Int 14:1137–1145

    Google Scholar 

  • Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35, L18701

    Article  Google Scholar 

  • Mann PS (2006) Introductory statistics. Wiley, New Jersey

    Google Scholar 

  • Maxwell JB (1981) Climatic regions of the Canadian Arctic Islands. Arctic 34:225–240

    Google Scholar 

  • Rhode R, Muller RA, Jacobsen R, Muller E, Perimutter S, Rosenfeld A, Wurtele J, Groom D, Wickham C (2013a) A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinf Geostat 1:1–7. doi:10.4172/2327-4581.1000101

    Google Scholar 

  • Rhode R, Muller RA, Jacobsen R, Perlmutter S, Rosenfeld A, Wurtele J, Curry J, Wickham C, Mosher S (2013b) Berkeley earth temperature averaging process. Geoinf Geostat 2:1–13. doi:10.4172/2327-4581.1000103

    Google Scholar 

  • Ruiz-Barradas A, Nigam S, Kavvada A (2013) The Atlantic Multidecadal Oscillation in twentieth century climate simulations: uneven progress from CMIP3 to CMIP5. Clim Dyn 41:3301–3315

    Article  Google Scholar 

  • Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depth, 1850–1990. J Geophys Res 98:22987–22994

    Article  Google Scholar 

  • Screen JA, Simmonds I (2013) Exploring links between Arctic amplification and mid-latitude weather. Geophys Res Lett 40:959–964

    Article  Google Scholar 

  • Screen JA, Simmonds I, Deser C, Tomas R (2013) The atmospheric response to three decades of observed Arctic sea ice loss. J Clim 26:1230–1248

    Article  Google Scholar 

  • Shindell DT, Schmidt GA, Mann ME, Faluvegi G (2004) Dynamic winter climate response to large tropical volcanic eruptions since 1600. J Geophys Res-Atmos 109, D05104

    Article  Google Scholar 

  • Smith T, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s Historical Merged Land-Ocean Surface Temperature Analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Stenchikov G, Robock A, Ramaswamy V, Schwarzkopf MD, Hamilton K, Ramachandran S (2002) Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J Geophys Res-Atmos 107. doi: 10.1029/2002JD002090

  • Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf HF (2006) Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res-Atmos 111, D07107

    Article  Google Scholar 

  • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc B 36:111–147

    Google Scholar 

  • Stoner AMK, Hayhoe K, Wuebbles DJ (2009) Assessing general circulation model simulations of atmospheric teleconnection patterns. J Clim 22:4348–4372

    Article  Google Scholar 

  • Tang Q, Zhang X, Yang X, Francis JA (2013) Cold winters extremes in northern continents linked to Arctic sea ice loss. Environ Res Lett 8:014036

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33, L12704

    Article  Google Scholar 

  • Trouet V, van Oldenborgh GJ (2013) KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology. Tree Ring Res 69:3–13

    Article  Google Scholar 

  • van Oldenborgh G, te Raa LA, Dijkstra HA, Philip SY (2009) Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean. Ocean Sci 5:293–301

    Article  Google Scholar 

  • Viau A, Gajewski K (2009) Reconstructing millennial-scale, regional paleoclimates of boreal Canada during the Holocene. J Clim 22:316–330

    Article  Google Scholar 

  • Wenner CG (1947) Pollen diagrams from Labrador. Geogr Ann 29:137–374

    Google Scholar 

  • Wolf J, Allice I, Bell T (2013) Values, climate change, and implications for adaptation: evidence from two communities in Labrador, Canada. Global Environ Chang 23:548–562

    Article  Google Scholar 

  • Wood KR, Overland JE, Jonsson T, Smoliak BV (2010) Air temperature variations on the Atlantic-Arctic boundary since 1802. Geophys Res Lett 37, L17708

    Google Scholar 

  • Woollings T, Harvey B, Masato G (2014) Arctic warming, atmospheric blocking and cold European winters in CMIP5 models. Environ Res Lett 9:014002

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like Interdecadal Variability: 1900–93. J Clim 10:1004–1020

    Article  Google Scholar 

  • Zhang Z, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean 38:395–429

    Article  Google Scholar 

  • Zuur AF, Leno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Method Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Way.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Way, R.G., Viau, A.E. Natural and forced air temperature variability in the Labrador region of Canada during the past century. Theor Appl Climatol 121, 413–424 (2015). https://doi.org/10.1007/s00704-014-1248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1248-2

Keywords

Navigation