Skip to main content
Log in

Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The relationship between polyploidy and breeding system is of critical importance for understanding evolution and improving the taxonomy of large Rosaceous genera. Reviewing the data available for the family and for tribe Pyreae (formerly subfamily Maloideae) in particular, it appears that hybridization, pseudogamous gametophytic apomixis, polyploidy, and self-compatibility are closely linked. Studies of the evolutionary significance of any one or two of these factors need to consider the others as well. Taxonomic decisions likewise need to be informed by knowledge of how these factors affect patterns of phenetic and genetic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldasoro J. J., Aedo C., Navarro C. and Garmendia F. M. (1998). The genus Sorbus (Maloideae, Rosaceae) in Europe and in North Africa: Morphological analysis and systematics. Syst. Bot. 23: 189–212

    Article  Google Scholar 

  • Aldasoro J. J., Aedo C., Garmendia F. M., Pando de la Hoz F. and Navarro C. (2004). Revision of Sorbus subgenera Aria and Torminaria (Maloideae - Rosaceae). Syst. Bot. Monogr. 69: 148

    Google Scholar 

  • Alice L. A. and Campbell C. S. (1999). Phylogeny of Rubus based on nuclear ribosomal DNA internal transcribed spacer region sequences. Amer. J. Bot. 86: 81–97

    Article  CAS  Google Scholar 

  • Amsellem L., Noyer J. L. and Hossaert-Mckey M. (2001). Evidence for a switch in the reproductive biology of Rubus alceifolius (Rosaceae) towards apomixis, between its native range and its area of introduction. Amer. J. Bot. 88: 2243–2251

    Article  Google Scholar 

  • Amsellem L., Pailler T., Noyer J. L. and Hossaert-McKey M. (2002). Characterisation of pseudogamous apospory in the reproductive biology of the invasive weed Rubus alceifolius (Rosaceae) in its area of introduction. Acta Bot. Gallica 149: 217–224

    Google Scholar 

  • Asker S. E. and Jerling L. (1992). Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Aspinwall N. and Christian T. (1992a). Clonal structure, genotypic diversity and seed production in populations of Filipendula rubra (Rosaceae) from the Northcentral United-States. Amer. J. Bot. 79: 294–299

    Article  Google Scholar 

  • Aspinwall N. and Christian T. (1992b). Pollination biology, seed production and population structure in Queen-of-the-Prairie, Filipendula rubra (Rosaceae) at Botkin Fen, Missouri. Amer. J. Bot. 79: 488–494

    Article  Google Scholar 

  • Bartish I. V., Hylmo B. and Nybom H. (2001). RAPD analysis of interspecific relationships in presumably apomictic Cotoneaster species. Euphytica 120: 273–280

    Article  CAS  Google Scholar 

  • Bradshaw A. D. (1971) The significance of hawthorns. In: History S. C. f. L. (ed.) Hedges and local history. National Council of Social Service, London, pp. 20–29.

  • Brown H. B. (1910). The genus Crataegus with some theories of the origin of its species. Bull. Torrey Bot. Club 37: 251–260

    Article  Google Scholar 

  • Burton T. L. and Husband B. C. (1999). Population cytotype structure in the polyploid Galax urceolata (Didpensidceae). Heredity 82: 381–390

    Article  PubMed  Google Scholar 

  • Camp W. H. (1942). The Crataegus problem. Castanea 7: 51–55

    Google Scholar 

  • Campbell C. S., Greene C. W. and Dickinson T. A. (1991). Reproductive biology in subfamily Maloideae (Rosaceae). Syst. Bot. 16: 333–349

    Article  Google Scholar 

  • Campbell C. S., Alice L. A. and Wright W. A. (1999). Comparisons of within-population genetic variation in sexual and agamospermous Amelanchier (Rosaceae) using RAPD markers. Pl. Syst. Evol. 215: 157–167

    Article  Google Scholar 

  • Campbell C. S., Evans R. C., Morgan D. R., Dickinson T. A. and Arsenault M. P. (2007). Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history. Pl. Syst. Evol. 266: 119–145

    Article  CAS  Google Scholar 

  • Casgrain P., Legendre P. (2004) The R Package for multivariate and spatial analysis. Montreal, QC.

  • Celotti N. (1995) The pollen tube pathway and obturator in hawthorn sexual reproduction. B.Sc. Honours thesis, Biology Department, Queen's University: 58.

  • Charnov E. L. (1982). The theory of sex allocation. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Clausen J. (1954). Partial apomixis as an equilibrium system in evolution. Caryologia Suppl. 6: 469–479

    Google Scholar 

  • Cruden R. W. (1977). Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31: 32–46

    Article  Google Scholar 

  • Cruden R. W. and Miller-Ward S. (1981). Pollen-ovule ratio, pollen size and the ratio of stigmatic area to the pollen-bearing area of the pollinator: an hypothesis. Evolution 35: 964–974

    Article  Google Scholar 

  • Cruden R. W. (2000). Pollen grains: why so many. Pl. Syst. Evol. 222: 143–165

    Article  Google Scholar 

  • Czapik R. (1996). Problems of apomictic reproduction in the families Compositae and Rosaceae. Folia Geobot. Phytotax. 31: 381–387

    Google Scholar 

  • Dickinson T. A. and Phipps J. B. (1986). Studies in Crataegus (Rosaceae: Maloideae) XIV. The breeding system of Crataegus crus galli sensu lato in Ontario (Canada). Amer. J. Bot. 73: 116–130

    Article  Google Scholar 

  • Dickinson T. A. and Campbell C. S. (1991). Population structure and reproductive ecology in the Maloideae (Rosaceae). Syst. Bot. 16: 350–362

    Article  Google Scholar 

  • Dickinson T. A., Belaoussoff S., Love R. M. and Muniyamma M. (1996). North American black-fruited hawthorns: I. Variation in floral construction, breeding system correlates, and their possible evolutionary significance in Crataegus sect. Douglasii Loudon. Folia Geobot. Phytotax. 31: 355–371

    Google Scholar 

  • Dickinson T. A. (1999). Species concepts in agamic complexes. In: Raamsdonk L. W. D. van, Nijs, J. C. M. den (eds) Evolution in man-made habitats, pp 319–339. Institute for Systematics & Ecology, Amsterdam

    Google Scholar 

  • Dickson E. E. (1995) Systematic studies of Malus section Chloromeles (Maloideae, Rosaceae). Ph.D. thesis, Department, Cornell University, 343 pp.

  • Dodd M. E., Silvertown M. W. and Chase M. W. (1999). Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53: 732–744

    Article  Google Scholar 

  • Erwin D. M. and Schorn H. E. (2000). Revision of Lyonothamnus A. Gray (Rosaceae) from the Neogene of western North America. Int. J. Pl. Sci. 161: 179–193

    Article  Google Scholar 

  • Evans R. C. and Dickinson T. A. (1996). North American black-fruited hawthorns. II. Floral development of 10- and 20-stamen morphotypes in Crataegus section Douglasii. Amer. J. Bot. 83: 961–978

    Article  Google Scholar 

  • Evans R. C. and Campbell C. S. (2002). The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Amer. J. Bot. 89: 1478–1484

    CAS  Google Scholar 

  • Grant V. (1981). Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Hardin J. W. (1973). The enigmatic chokeberries (Aronia, Rosaceae). Bull. Torrey Bot. Club 100(3): 178–184

    Article  Google Scholar 

  • Hauck N. R., Yamane H., Tao R. and Iezzoni A. F. (2006). Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics 172: 1191–1198

    Article  PubMed  Google Scholar 

  • Helfgott D. M., Francisco-Ortega J., Santos-Guerra A., Jansen R. K. and Simpson B. B. (2000). Biogeography and breeding system evolution of the woody Bencomia alliance (Rosaceae) in Macaronesia based on ITS sequence data. Syst. Bot. 25: 82–97

    Article  Google Scholar 

  • Hull P. and Smart G. J. B. (1984). Variation in two Sorbus species endemic to the Isle or Arran, Scotland. Annual. Bot. 53(5): 641–648

    Google Scholar 

  • Hylmö B. and Fryer J. (1999). Cotoneasters in Europe. Acta Bot. Fenn. 162: 179–184

    Google Scholar 

  • Insightful_Corporation (2003) S-Plus 6.2, Seattle, WA.

  • Izmaiłow R. (1986). Cyto-embryological studies on Alchemilla L. (series Calycinae Buser): II. Apomictic processes in ovules. Acta Biol. Cracov., Ser. Bot. 28: 39–64

    Google Scholar 

  • Izmaiłow R. (1994). Embryo and endosperm relations at early stages of their development in Alchemilla subsect. Heliodrosium (Rosaceae). Polish Bot. Stud. 8: 61–67

    Google Scholar 

  • Jankun A. and Kovanda M. (1988). Apomixis at the diploid level in Sorbus eximia. Embryological studies in Sorbus III. Preslia 60: 193–213

    Google Scholar 

  • Johri B. M., Ambegaokar K. B. and Srivastava P. S. (1992). Comparative embryology of angiosperms. Springer-Verlag, Berlin

    Google Scholar 

  • Joly S., Starr J. R., Lewis W. H. and Bruneau A. (2006). Polyploid and hybrid evolution in roses east of the Rocky Mountains. Amer. J. Bot. 93: 412–425

    Google Scholar 

  • Kalkman C. (2004). Rosaceae. In: Kubitzki, K. (eds) Flowering plants - Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales, pp 343–386. Springer, Berlin

    Google Scholar 

  • Kerr M. S. (2004) A phylogenetic and biogeographic analysis of Sanguisorbeae (Rosaceae), with emphasis on the Pleistocene radiation of the high Andean genus Polylepis. Thesis, Cell Biology & Molecular Genetics Department, University of Maryland.

  • Kessler M. (1995). Polylepis-Wälder Boliviens: Taxa, Ökologie, Verbreitung und Geschichte. Dissertationes Botanicae 246. J. Cramer, Berlin

    Google Scholar 

  • Kollmann J., Steinger T. and Roy B. A. (2000). Evidence of sexuality in European Rubus (Rosaceae) species based on AFLP and allozyme analysis. Amer. J. Bot. 87: 1592–1598

    Article  CAS  Google Scholar 

  • Kovanda M. (1965). On the generic concepts in the Maloideae. Preslia 37: 27–34

    Google Scholar 

  • Krügel T. (1992). Zur zytologischen Struktur der Gattung Cotoneaster (Rosaceae, Maloideae) III. Beitr. Phytotax. 15: 69–86

    Google Scholar 

  • Leht M. and Reier U. (1999). Origin, chromosome number and reproduction biology of Potentilla fruticosa (Rosaceae) in Estonia and Latvia. Acta Bot. Fenn. 162: 191–196

    Google Scholar 

  • Leung G., Parks C. R. (2002) Isozyme analysis of Crataegus species. In: Lance R. (ed.) Cumulative analyses report of Crataegus harbisonii, Crataegus ashei and Crataegus triflora prepared for the U. S. Fish and Wildlife Service Order Number 1448-43910-0-M002, Asheville, NC, pp. 73–77.

  • Lewis D. (1947). Competition and dominance of incompatibility alleles in diploid pollen. Heredity 1: 85–108

    Google Scholar 

  • Liebhard R., Gianfranceschi L., Koller B., Ryder C. D., Tarchini R., Van de Weg E. and Gessler C. (2002). Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol. Breed. 10: 217–241

    Article  CAS  Google Scholar 

  • Liljefors A. (1953). Studies on propagation, embryology and pollination in Sorbus. Acta Horti Berg. 16: 277–329

    Google Scholar 

  • Liljefors A. (1955). Cytological studies in Sorbus. Acta Horti Berg. 17: 47–113

    Google Scholar 

  • Lo E., Stefanovic S., Dickinson T. A. (in press), Crataegus and Mespilus (Pyreae, Rosaceae) - two genera or one? Syst. Bot. (accepted pending revision 2006-07-03).

  • Love R. and Feigen M. (1978). Interspecific hybridization between native and naturalized Crataegus (Rosaceae) in western Oregon. Madroño 25: 211–217

    Google Scholar 

  • Mable B. K. (2004). Polyploidy and self-compatibility: is there a connection. New Phytologist 162: 803–811

    Article  Google Scholar 

  • Macklin J. A. (2001) Systematics of Crataegus ser. Coccineae. I. Delimitation of series. Ph.D. thesis, Department of Plant Sciences Department, University of Western Ontario.

  • Mandryk V. Y. (1994). Embryologic investigation of Cotoneaster melanocarpus Fisch. ex Blytt (Rosaceae). Ukrayins'k. Bot. Zhurn. 51: 86–93

    Google Scholar 

  • Matzk F., Meister A. and Schubert I. (2000). An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Pl. J. 21: 96–108

    Google Scholar 

  • McCue K.A., Havens K., Archer J., Murai M. (2001) Using demographic and genetic data for the conservation of Mespilus canescens, a rare Rosaceous shrub (abstract). Society for Conservation Biology, University of Hawaii, Hilo, Hawaii.

  • Miller J. S. and Venable D. L. (2000). Polyploidy and the evolution of gender dimorphism in plants. Science 289: 2335–2338

    Article  PubMed  CAS  Google Scholar 

  • Mishima M., Ohmido N., Fukui M. and Yahara T. (2002). Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma 110: 550–558

    PubMed  CAS  Google Scholar 

  • Muniyamma M. and Phipps J. B. (1979). [Studies in Crataegus (Rosaceae: Maloideae). I.] Cytological proof of apomixis in Crataegus (Rosaceae). Amer. J. Bot. 66: 149–155

    Article  Google Scholar 

  • Nelson-Jones E. B., Briggs D. and Smith A. G. (2002). The origin of intermediate species of the genus Sorbus. Theor. Appl. Genet. 105: 953–963

    Article  PubMed  CAS  Google Scholar 

  • Nixon K. C. and Wheeler Q. D. (1990). An amplification of the phylogenetic species concept. Cladistics 6: 211–223

    Article  Google Scholar 

  • Noirot M., Couvet D. and Hamon S. (1997). Main role of self-pollination rate on reproductive allocations in pseudogamous apomicts. Theor. Appl. Genet. 95: 479–483

    Article  Google Scholar 

  • Nybom H. (1996). DNA fingerprinting – a useful tool in the taxonomy of apomictic plant groups. Folia Geobot. Phytotax. 31: 295–304

    Google Scholar 

  • Nylehn J., Hamre E. and Nordal I. (2003). Facultative apomixis and hybridization in arctic Potentilla section Niveae (Rosaceae) from Svalbard. Bot. J. Linn. Soc. 142: 373–381

    Article  Google Scholar 

  • Oh S. H. and Potter D. (2005). Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA and LEAFY. Amer. J. Bot. 92: 179–192

    CAS  Google Scholar 

  • Palmer E. J. (1943). The species concept in Crataegus. Chron. Bot. 7: 373–375

    Google Scholar 

  • Palmer E. J. (1946). Crataegus in the northeastern and central U. S. and adjacent Canada. Brittonia 5: 471–490

    Article  Google Scholar 

  • Persson Hovmalm H. A., Jepsson N., Bartish I. V. and Nybom H. (2004). RAPD analysis of diploid and tetraploid populations of Aronia points to different reproductive strategies within the genus. Hereditas (Lund) 141: 301–312

    Article  Google Scholar 

  • Phipps J. B. and Muniyamma M. (1980). [Studies in Crataegus (Rosaceae: Maloideae) III.] A taxonomic revision of Crataegus (Rosaceae) in Ontario. Canad. J. Bot. 58: 1621–1699

    Google Scholar 

  • Phipps J. B., Robertson K. R., Smith P. G. and Rohrer J. R. (1990). A checklist of the subfamily Maloideae (Rosaceae). Canad. J. Bot. 68: 2209–2269

    Google Scholar 

  • Phipps J. B., O'Kennon R. J. and Lance R. W. (2003). Hawthorns and medlars. Timber Press, Portland, OR

    Google Scholar 

  • Phipps J. B. (2005). A review of hybridization in North American hawthorns. Ann. Missouri Bot. Gard. 92: 113–126

    Google Scholar 

  • Potter D., Eriksson T., Evans R. C., Oh S. H., Smedmark J. E. E., Morgan D. R., Kerr M., Robertson K. R., Arsenault M. P., Dickinson T. A. and Campbell C. S. (2007). Phylogeny and classification of Rosaceae. Pl. Syst. Evol. 266: 5–43

    Article  Google Scholar 

  • Ptak K. (1989). Cyto-embryological investigations on the Polish representatives of the genus Crataegus L. II. Embryology of triploid species. Acta Biol. Cracov., Ser. Bot. 31: 97–112

    Google Scholar 

  • Purich M. A. (2005) Characterizing hybridization between native and non-native Crataegus species. Thesis, Botany Department, University of Toronto.

  • Ramsey J. and Schemske D. W. (1998). Pathways, mechanisms and rates of polyploid formation in flowering plants. Annual Rev. Ecol. Syst. 29: 467–501

    Article  Google Scholar 

  • Ranney T. G., Eaker T. A., Lynch N. P. and Olsen R. T. (2004). Reproductive pathways among flowering crabapples. In: Reed, S. M. (eds) SNA Research Conference Vol. 49 - Plant Breeding & Evaluation Section, pp. Southern Nursery Association, Inc., Atlanta, GA (http://www.sna.org/research/04proceedings/04proceedingshtmls/ResProcSec1237.html). Accessed on 19 September 2006

    Google Scholar 

  • Robertson A., Newton A. C. and Ennos R. A. (2004). Multiple hybrid origins, genetic diversity and population genetic structure of two endemic Sorbus taxa on the Isle of Arran, Scotland. Mol. Ecol. 13: 123–134

    Article  PubMed  CAS  Google Scholar 

  • Robertson K. R. (1974) The genera of Rosaceae in the southeastern United States. J. Arnold Arbor. 55: 303–332, 344–401, 611–662.

    Google Scholar 

  • Robinson W. A. and Partanen C. R. (1980). Experimental taxonomy in the genus Amelanchier 1. A new look at the chromosome numbers of the Amelanchier species growing in the Northeastern United States. Rhodora 82: 483–493

    Google Scholar 

  • Schmidt-Lebuhn A. N., Kumar M. and Kessler M. (2006). An assessment of the genetic population structure of two species of Polylepis Ruiz & Pav. (Rosaceae) in the Chilean Andes. Flora 201: 317–325

    Google Scholar 

  • Senanayake Y. D. A. and Bringhurst R. S. (1967). Origin of Fragaria polyploids. I. Cytological analysis. Amer. J. Bot. 54: 221–228

    Article  Google Scholar 

  • Smedmark J. E. E. and Eriksson T. (2002). Phylogenetic relationships of Geum (Rosaceae) and relatives inferred from the nrITS and trnL-trnF regions. Syst. Bot. 27: 303–317

    Google Scholar 

  • Smedmark J. E. E., Eriksson T., Evans R. C. and Campbell C. S. (2003). Ancient allopolyploid speciation in Geinae (Rosaceae): Evidence from nuclear granule-bound starch synthase (GBSSI) gene sequences. Syst. Biol. 52: 374–385

    PubMed  Google Scholar 

  • Smith P. G., Phipps J. B., Dickinson T. A. (1980) Accumulated heat in relation to Crataegus flowering (abstract, contributed paper). 2nd international congress of systematic and evolutionary biology, Vancouver, BC, University of British Columbia.

  • Smith P. G. and Phipps J. B. (1988). Studies in Crataegus (Rosaceae, Maloideae), XIX. Breeding behavior in Ontario Crataegus series Rotundifoliae. Canad. J. Bot. 66: 1914–1923

    Google Scholar 

  • Stebbins G. L. (1980). Polyploidy in plants: unsolved problems and prospects. In: Lewis, W. H. (eds) Polyploidy - biological relevance, pp 495–520. Plenum Press, New York

    Google Scholar 

  • Talent N. and Dickinson T. A. (2005). Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): evolutionary inferences from flow cytometry of nuclear DNA amounts. Canad. J. Bot. 83: 1268–1304

    Article  CAS  Google Scholar 

  • Talent N. and Dickinson T. A. (2007a). Endosperm formation in aposporous Crataegus L. (Rosaceae, Spiraeoideae, tribe Pyreae): parallels to Ranunculaceae and Poaceae. New Phytologist 173: 231–249

    Article  Google Scholar 

  • Talent N., Dickinson T. A. (2007b) Apomixis and hybridization in Rosaceae subtribe Pyrineae Dumort.: a new tool promises new insights. In: Grossniklaus U., Hörandl E., Sharbel T., van Dijk P. (eds.) Apomixis: evolution, mechanisms and perspectives, Gantner Verlag, Ruggell, Liechtenstein.

  • Talent N., Dickinson T. A. (2007c) Ploidy level increases and decreases in seeds from crosses between sexual diploids and dpomictic triploids and tetraploids in Crataegus L. (Rosdceae, spiraeoideae, tribe Pyreae). Canad. J. Bot. 85.

  • Tavaud M., Zanetto A., David J. L., Laigret F. and Dirlewanger E. (2004). Genetic relationships between diploid and allotetraploid cherry species (Prunus avium, Prunus xgondouinii and Prunus cerasus). Heredity 93: 631–638

    Article  PubMed  CAS  Google Scholar 

  • Vamosi J. C. and Dickinson T. A. (2006). Polyploidy and diversification: a phylogenetic investigation in Rosaceae. Int. J. Pl. Sci. 167: 349–358

    Article  Google Scholar 

  • Weber H. E. (1999). The present state of taxonomy and mapping of blackberries (Rubus) in Europe. Acta Bot. Fenn. 162: 161–168

    Google Scholar 

  • Weber J. E. and Campbell C. S. (1989). Breeding system of a hybrid between a sexual and an apomictic species of Amelanchier, shadbush (Rosaceae, Maloideae). Amer. J. Bot. 73: 341–347

    Article  Google Scholar 

  • Wells T. C. and Phipps J. B. (1989). Studies in Crataegus (Rosaceae: Maloideae). XX. Interserial hybridization between Crataegus monogyna (series Oxyacanthae) and Crataegus punctata (series Punctatae) in southern Ontario. Canad. J. Bot. 67: 2465–2472

    Google Scholar 

  • Werlemark G. (2000). Evidence of apomixis in hemisexual dogroses, Rosa section Caninae. Sexual Plant Reprod. 12: 353–359

    Article  Google Scholar 

  • Wissemann V. and Ritz C. M. (2005). The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Bot. J. Linn. Soc. 147: 275–290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Dickinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickinson, T., Lo, E. & Talent, N. Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Plant Syst. Evol. 266, 59–78 (2007). https://doi.org/10.1007/s00606-007-0541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0541-2

Keywords

Navigation