Skip to main content
Log in

The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The development of the Brazilian disc test for determining indirect tensile strength and its applications in rock mechanics are reviewed herein. Based on the history of research on the Brazilian test by analytical, experimental, and numerical approaches, three research stages can be identified. Most of the early studies focused on the tensile stress distribution in Brazilian disc specimens, while ignoring the tensile strain distribution. The observation of different crack initiation positions in the Brazilian disc has drawn a lot of research interest from the rock mechanics community. A simple extension strain criterion was put forward by Stacey (Int J Rock Mech Min Sci Geomech Abstr 18(6):469–474, 1981) to account for extension crack initiation and propagation in rocks, although this is not widely used. In the present study, a linear elastic numerical model is constructed to study crack initiation in a 50-mm-diameter Brazilian disc using FLAC3D. The maximum tensile stress and the maximum tensile strain are both found to occur about 5 mm away from the two loading points along the compressed diameter of the disc, instead of at the center of the disc surface. Therefore, the crack initiation point of the Brazilian test for rocks may be located near the loading point when the tensile strain meets the maximum extension strain criterion, but at the surface center when the tensile stress meets the maximum tensile strength criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akazawa T (1943) New test method for evaluating internal stress due to compression of concrete: the splitting tension test. J Japan Soc Civil Eng 29:777–787

    Google Scholar 

  • Andreev GE (1991a) A review of the Brazilian test for rock tensile strength determination. Part I: calculation formula. Min Sci Technol 13(3):445–456. doi:10.1016/0167-9031(91)91006-4

    Article  Google Scholar 

  • Andreev GE (1991b) A review of the Brazilian test for rock tensile strength determination. Part II: contact conditions. Min Sci Technol 13(3):457–465. doi:10.1016/0167-9031(91)91006-4

    Article  Google Scholar 

  • ASTM (2008) D 3967-08: Standard test method for splitting tensile strength of intact rock core specimens. ASTM International, West Conshohocken, USA

  • Aydin A, Basu A (2006) The use of Brazilian Test as a Quantitative Measure of Rock Weathering. Rock Mech Rock Eng 39(1):77–85. doi:10.1007/s00603-005-0069-0

    Article  Google Scholar 

  • Barla G, Innaurato N (1973) Indirect tensile testing of anisotropic rocks. Rock Mech 5(4):215–230

    Article  Google Scholar 

  • Bazant ZP, Kazemi MT, Hasegawa T, Mazars J (1991) Size effect in Brazilian split-cylinder tests. Measurements and fracture analysis. ACI Mater J 88(3):325–332

    Google Scholar 

  • Cai M, Kaiser PK (2004) Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks. Int J Rock Mech Min Sci 41 (Suppl. 1):2B 03 01-06. doi:10.1016/j.ijrmms.2004.03.086

  • Carneiro FLLB (1943) A new method to determine the tensile strength of concrete. In: Paper presented at the Proceedings of the 5th meeting of the Brazilian Association for Technical Rules (“Associação Brasileire de Normas Técnicas—ABNT”), 3d. section

  • Chen C-S, Pan E, Amadei B (1998) Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int J Rock Mech Min Sci 35(1):43–61. doi:10.1016/s0148-9062(97)00329-x

    Article  Google Scholar 

  • Chen S, Yue ZQ, Tham LG (2004a) Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int J Rock Mech Min Sci 41(6):939–957

    Article  Google Scholar 

  • Chen S, Yue ZQ, Tham LG, Lee PKK (2004b) Modeling of the indirect tensile test for inhomogeneous granite using a digital image-based numerical method. Int J Rock Mech Min Sci 41 (Suppl. 1):2B 01 01-06

    Google Scholar 

  • Chou Y-C, Chen C-S (2008) Determining elastic constants of transversely isotropic rocks using Brazilian test and iterative procedure. Int J Numer Anal Meth Geomech 32(3):219–234. doi:10.1002/nag.619

    Article  Google Scholar 

  • Christensen NI (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101(B2):3139–3156. doi:10.1029/95jb03446

    Article  Google Scholar 

  • Claesson J, Bohloli B (2002) Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution. Int J Rock Mech Min Sci 39(8):991–1004. doi:10.1016/s1365-1609(02)00099-0

    Article  Google Scholar 

  • Colback PSB (1966) An analysis of brittle fracture initiation and propagation in the Brazilian test. In: Paper presented at the Proceedings of the First Congress International Society of Rock Mechanics, Lisbon, Portugal

  • Coviello A, Lagioia R, Nova R (2005) On the measurement of the tensile strength of soft rocks. Rock Mech Rock Eng 38(4):251–273. doi:10.1007/s00603-005-0054-7

    Article  Google Scholar 

  • Dorogoy A, Banks-Sills L (2005) Effect of crack face contact and friction on Brazilian disk specimens—a finite difference solution. Eng Fract Mech 72(18):2758–2773. doi:10.1016/j.engfracmech.2005.05.005

    Article  Google Scholar 

  • Efimov VP (2009) The rock strength in different tension conditions. J Min Sci 45(6):569–575. doi:10.1007/s10913-009-0071-0

    Article  Google Scholar 

  • Erarslan N, Williams DJ (2011) Investigating the effect of cyclic loading on the indirect tensile strength of rocks. Rock Mech Rock Eng. doi:10.1007/s00603-011-0209-7

    Google Scholar 

  • Erarslan N, Williams DJ (2012) Experimental, numerical and analytical studies on tensile strength of rocks. Int J Rock Mech Min Sci 49(1):21–30. doi:10.1016/j.ijrmms.2011.11.007

    Google Scholar 

  • Erarslan N, Liang ZZ, Williams DJ (2011) Experimental and numerical studies on determination of indirect tensile strength of rocks. Rock Mech Rock Eng. doi:10.1007/s00603-011-0205-y

    Google Scholar 

  • Exadaktylos GE, Kaklis KN (2001) Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically. Int J Rock Mech Min Sci 38(2):227–243. doi:10.1016/s1365-1609(00)00072-1

    Article  Google Scholar 

  • Fairbairn E, Ulm F (2002) A tribute to Fernando L. L. B. Carneiro (1913–2001) engineer and scientist who invented the Brazilian test. Mater Struct 35(3):195–196. doi:10.1007/bf02533589

    Article  Google Scholar 

  • Fairhurst C (1964) On the validity of the ‘Brazilian’ test for brittle materials. Int J Rock Mech Min Sci Geomech Abstr 1(4):535–546. doi:10.1016/0148-9062(64)90060-9

    Article  Google Scholar 

  • Fuenkajorn K, Klanphumeesri S (2011) Laboratory determination of direct tensile strength and deformability of intact rocks. Geotech Test J 34(1):1–6. doi: 10.1520/GTJ103134

  • Gong F, Li X, Zhao J (2010) Analytical algorithm to estimate tensile modulus in Brazilian disk splitting tests. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng 29(5):881–891 (in Chinese)

    Google Scholar 

  • Goodman RE (1989) Introduction to rock mechanics, 2nd edn. Wiley, New York

    Google Scholar 

  • Guo H, Aziz NI, Schmidt LC (1993) Rock fracture-toughness determination by the Brazilian test. Eng Geol 33(3):177–188. doi:10.1016/0013-7952(93)90056-i

    Article  Google Scholar 

  • Hawkes I, Mellor M (1970) Uniaxial testing in rock mechanics laboratories. Eng Geol 4(3):179–285. doi:10.1016/0013-7952(70)90034-7

    Article  Google Scholar 

  • Hiramatsu Y, Oka Y (1966) Determination of the tensile strength of rock by a compression test of an irregular test piece. Int J Rock Mech Min Sci Geomech Abstr 3(2):89–90. doi:10.1016/0148-9062(66)90002-7

    Article  Google Scholar 

  • Hobbs DW (1964) The tensile strength of rocks. Int J Rock Mech Min Sci Geomech Abstr 1(3):385–396. doi:10.1016/0148-9062(64)90005-1

    Article  Google Scholar 

  • Hobbs DW (1965) An assessment of a technique for determining the tensile strength of rock. Br J Appl Phys 16(2):259–268

    Article  Google Scholar 

  • Hobbs DW (1967) Rock tensile strength and its relationship to a number of alternative measures of rock strength. Int J Rock Mech Min Sci Geomech Abstr 4(1):115–127. doi:10.1016/0148-9062(67)90009-5

    Article  Google Scholar 

  • Hondros G (1959) The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust J Appl Sci 10(3):243–268

    Google Scholar 

  • Hooper JA (1971) The failure of glass cylinders in diametral compression. J Mech Phys Solids 19(4):179–200

    Article  Google Scholar 

  • Hudson JA (1969) Tensile strength and the ring test. Int J Rock Mech Min Sci Geomech Abstr 6(1):91–97. doi:10.1016/0148-9062(69)90029-1

    Article  Google Scholar 

  • Hudson JA, Brown ET, Rummel F (1972) The controlled failure of rock discs and rings loaded in diametral compression. Int J Rock Mech Min Sci Geomech Abstr 9(2):241–248. doi:10.1016/0148-9062(72)90025-3

    Article  Google Scholar 

  • ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15(3):99–103. doi:10.1016/0148-9062(78)90003-7

    Article  Google Scholar 

  • Itasca Consulting Group, Inc. (2006) FLAC3D—Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 3.1 User’s Manual. Minneapolis, Minnesota, USA

  • Jaeger JC (1967) Failure of rocks under tensile conditions. Int J Rock Mech Min Sci Geomech Abstr 4(2):219–227. doi:10.1016/0148-9062(67)90046-0

    Article  Google Scholar 

  • Jaeger JC, Hoskins ER (1966a) Rock failure under confined Brazilian test. J Geophys Res 71(10):2651–2659

    Article  Google Scholar 

  • Jaeger JC, Hoskins ER (1966b) Stresses and failure in rings of rock loaded in diametral tension or compression. Br J Appl Phys 17(5):685–692

    Article  Google Scholar 

  • Lajtai EZ (1980) Tensile strength and its anisotropy measured by point and line-loading of sandstone. Eng Geol 15(3–4):163–171. doi:10.1016/0013-7952(80)90032-0

    Article  Google Scholar 

  • Lanaro F, Sato T, Stephansson O (2009) Microcrack modelling of Brazilian tensile tests with the boundary element method. Int J Rock Mech Min Sci 46(3):450–461. doi:10.1016/j.ijrmms.2008.11.007

    Article  Google Scholar 

  • Lavrov A, Vervoort A (2002) Theoretical treatment of tangential loading effects on the Brazilian test stress distribution. Int J Rock Mech Min Sci 39(2):275–283. doi:10.1016/s1365-1609(02)00010-2

    Article  Google Scholar 

  • Lavrov A, Vervoort A, Wevers M, Napier JAL (2002) Experimental and numerical study of the Kaiser effect in cyclic Brazilian tests with disk rotation. Int J Rock Mech Min Sci 39(3):287–302. doi:10.1016/s1365-1609(02)00038-2

    Article  Google Scholar 

  • Li D, Li X, Li CC (2010) Experimental studies of mechanical properties of two rocks under direct compression and tension. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng 29(3):624–632 (in Chinese)

    Google Scholar 

  • Li D, Li C, Li X (2011) Influence of sample height-to-width ratios on failure mode for rectangular prism samples of hard rock loaded in uniaxial compression. Rock Mech Rock Eng 44(3):253–267. doi:10.1007/s00603-010-0127-0

    Article  Google Scholar 

  • Malan DF, Napier JAL, Watson BP (1994) Propagation of fractures from an interface in a Brazilian test specimen. Int J Rock Mech Min Sci Geomech Abstr 31(6):581–596. doi:10.1016/0148-9062(94)90002-7

    Article  Google Scholar 

  • Markides CF, Kourkoulis SK (2012) The stress field in a standardized brazilian disc: the influence of the loading type acting on the actual contact length. Rock Mech Rock Eng 45(2):145–158. doi:10.1007/s00603-011-0201-2

    Article  Google Scholar 

  • Markides CF, Pazis DN, Kourkoulis SK (2010) Closed full-field solutions for stresses and displacements in the Brazilian disk under distributed radial load. Int J Rock Mech Min Sci 47(2):227–237. doi:10.1016/j.ijrmms.2009.11.006

    Article  Google Scholar 

  • Markides CF, Pazis DN, Kourkoulis SK (2011) Influence of friction on the stress field of the Brazilian tensile test. Rock Mech Rock Eng 44(1):113–119. doi:10.1007/s00603-010-0115-4

    Article  Google Scholar 

  • Markides CF, Pazis DN, Kourkoulis SK (2012) The Brazilian disc under non-uniform distribution of radial pressure and friction. Int J Rock Mech Min Sci 50(1):47–55. doi:10.1016/j.ijrmms.2011.12.012

    Google Scholar 

  • Mellor M, Hawkes I (1971) Measurement of tensile strength by diametral compression of discs and annuli. Eng Geol 5(3):173–225. doi:10.1016/0013-7952(71)90001-9

    Article  Google Scholar 

  • Newman DA, Bennett DG (1990) The effect of specimen size and stress rate for the Brazilian test—a statistical analysis. Rock Mech Rock Eng 23(2):123–134. doi:10.1007/bf01020397

    Article  Google Scholar 

  • Nova R, Zaninetti A (1990) An investigation into the tensile behaviour of a schistose rock. Int J Rock Mech Min Sci Geomech Abstr 27(4):231–242. doi:10.1016/0148-9062(90)90526-8

    Google Scholar 

  • Okubo S, Fukui K (1996) Complete stress-strain curves for various rock types in uniaxial tension. Int J Rock Mech Min Sci Geomech Abstr 33(6):549–556. doi:10.1016/0148-9062(96)00024-1

    Article  Google Scholar 

  • Pandey P, Singh DP (1986) Deformation of a rock in different tensile tests. Eng Geol 22(3):281–292. doi:10.1016/0013-7952(86)90029-3

    Article  Google Scholar 

  • Peng SS (1976) Stress analysis of cylindrical rock discs subjected to axial double point load. Int J Rock Mech Min Sci Geomech Abstr 13(3):97–101. doi:10.1016/0148-9062(76)90426-5

    Article  Google Scholar 

  • Rocco C, Guinea GV, Planas J, Elices M (1999a) Size effect and boundary conditions in the Brazilian test: Experimental verification. Mater Struct/Materiaux et Constructions 32(3):210–217

    Google Scholar 

  • Rocco C, Guinea GV, Planas J, Elices M (1999b) Size effect and boundary conditions in the Brazilian test: theoretical analysis. Mater Struct/Materiaux et Constructions 32(6):437–444

    Google Scholar 

  • Satoh Y (1987) Position and load of failure in Brazilian test; a numerical analysis by Griffith criterion. J Soc Mater Sci Japan 36(410):1219–1224

    Article  Google Scholar 

  • Stacey TR (1981) A simple extension strain criterion for fracture of brittle rock. Int J Rock Mech Min Sci Geomech Abstr 18(6):469–474. doi:10.1016/0148-9062(81)90511-8

    Article  Google Scholar 

  • Sundaram PN, Corrales JM (1980) Brazilian tensile strength of rocks with different elastic properties in tension and compression. Int J Rock Mech Min Sci Geomech Abstr 17(2):131–133. doi:10.1016/0148-9062(80)90265-x

    Article  Google Scholar 

  • Swab JJ, Yu J, Gamble R, Kilczewski S (2011) Analysis of the diametral compression method for determining the tensile strength of transparent magnesium aluminate spinel. Int J Fract. doi:10.1007/s10704-011-9655-1

    Google Scholar 

  • Tavallali A, Vervoort A (2010a) Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions. Int J Rock Mech Min Sci 47(2):313–322. doi:10.1016/j.ijrmms.2010.01.001

    Article  Google Scholar 

  • Tavallali A, Vervoort A (2010b) Failure of layered sandstone under Brazilian test conditions: effect of micro-scale parameters on macro-scale behaviour. Rock Mech Rock Eng 43(5):641–653. doi:10.1007/s00603-010-0084-7

    Article  Google Scholar 

  • Van De Steen B, Vervoort A, Napier JAL (2005) Observed and simulated fracture pattern in diametrically loaded discs of rock material. Int J Fract 131(1):35–52

    Article  Google Scholar 

  • Vutukuri VS (1974) The effect of liquids on the tensile strength of limestone. Int J Rock Mech Min Sci Geomech Abstr 11(1):27–29. doi:10.1016/0148-9062(74)92202-5

    Article  Google Scholar 

  • Wang QZ, Jia XM, Kou SQ, Zhang ZX, Lindqvist PA (2004) The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int J Rock Mech Min Sci 41(2):245–253. doi:10.1016/s1365-1609(03)00093-5

    Article  Google Scholar 

  • Wijk G (1978) Some new theoretical aspects of indirect measurements of the tensile strength of rocks. Int J Rock Mech Min Sci Geomech Abstr 15(4):149–160. doi:10.1016/0148-9062(78)91221-4

    Article  Google Scholar 

  • Xu G, Chen F, Xiao JQ (2006) Influence of load contact condition on rock tensile strength. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng 25(1):168–173 (in Chinese)

    Google Scholar 

  • Yanagidani T, Sano O, Terada M, Ito I (1978) The observation of cracks propagating in diametrically-compressed rock discs. Int J Rock Mech Min Sci Geomech Abstr 15(5):225–235. doi:10.1016/0148-9062(78)90955-5

    Article  Google Scholar 

  • Ye J, Wu FQ, Sun JZ (2009) Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads. Int J Rock Mech Min Sci 46(3):568–576. doi:10.1016/j.ijrmms.2008.08.004

    Article  Google Scholar 

  • Yu Y (2005) Questioning the validity of the Brazilian test for determining tensile strength of rocks. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng 24(7):1150–1157 (in Chinese)

    Google Scholar 

  • Yu Y, Meng C (2005) 3-D distribution of tensile stress in rock specimens for the Brazilian test. J Univ Sci Technol Beijing Miner Metall Mater (Eng Ed) 12(6):495–499. doi:10.1111/j.1524-4733.2005.00041.x

    Google Scholar 

  • Yu Y, Yin J, Zhong Z (2006) Shape effects in the Brazilian tensile strength test and a 3D FEM correction. Int J Rock Mech Min Sci 43(4):623–627. doi:10.1016/j.ijrmms.2005.09.005

    Article  Google Scholar 

  • Yu Y, Zhang J, Zhang J (2009) A modified Brazilian disk tension test. Int J Rock Mech Min Sci 46(2):421–425. doi:10.1016/j.ijrmms.2008.04.008

    Article  Google Scholar 

  • Yue ZQ, Chen S, Tham LG (2003) Finite element modeling of geomaterials using digital image processing. Comput Geotech 30(5):375–397

    Article  Google Scholar 

  • Zhu WC, Tang CA (2006) Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int J Rock Mech Min Sci 43(2):236–252. doi:10.1016/j.ijrmms.2005.06.008

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the researchers who have contributed to the development of the Brazilian test on rock and rock-like materials over the past 70 years. The first author acknowledges the support of the National Natural Science Foundation of China (no. 11102239) and the 973 Program (no. 2010CB732004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Ngai Yuen Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Wong, L.N.Y. The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights. Rock Mech Rock Eng 46, 269–287 (2013). https://doi.org/10.1007/s00603-012-0257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-012-0257-7

Keywords

Navigation