Skip to main content

Advertisement

Log in

Blockade of the apelin–APJ system promotes mouse liver regeneration by activating Kupffer cells after partial hepatectomy

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Liver regeneration after massive hepatectomy or living donor liver transplantation is critical. The apelin–APJ system is involved in the regulation of cardiovascular function, inflammation, fluid homeostasis, the adipo-insular axis, and angiogenesis, but its function in liver regeneration remains unclear.

Methods

We investigated the impact of pharmacologic blockade of the apelin–APJ system, using the specific APJ antagonist F13A on liver regeneration after hepatectomy in mice.

Results

F13A-treated mice had significantly higher serum concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-6 than control mice, due to F13A-promoted activation of Kupffer cells. Compared with untreated mice, F13A enhanced the signal transducer and activator of transcription 3 and mitogen-activated protein kinase pathways, stimulated cell-cycle progression, and promoted hepatocyte proliferation and liver regeneration without inducing apoptosis or inflammation in regenerating livers. In vitro, Kupffer cells expressed APJ and were activated directly by F13A treatment, releasing TNF-α and IL-6. Moreover, F13A-treated mice had a higher survival rate than untreated mice in the extended hepatectomy model.

Conclusions

F13A treatment promotes early phase liver regeneration after hepatectomy by promoting the activation of Kupffer cells and increasing serum levels of TNF-α and IL-6. F13A treatment may become a therapeutic option to facilitate efficient liver regeneration after liver surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

ELISA:

Enzyme-linked immunosorbent assay

ERK:

Extracellular signal-related kinase

ExPH:

Extended partial hepatectomy

HGF:

Hepatocyte growth factor

IL-6:

Interleukin-6

JNK:

c-jun N-terminal kinase

LDLT:

Living donor liver transplantation

PCR:

Polymerase chain reaction

PH:

Partial hepatectomy

STAT3:

Signal transducer and activator of transcription 3

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

References

  1. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. J Hepatol. 2012;57:692–4.

    Article  PubMed  Google Scholar 

  2. Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol. 2004;5:836–47.

    Article  CAS  PubMed  Google Scholar 

  3. Shirabe K, Shimada M, Gion T, et al. Postoperative liver failure after major hepatic resection for hepatocellular carcinoma in the modern era with special reference to remnant liver volume. J Am Coll Surg. 1999;188:304–9.

    Article  CAS  PubMed  Google Scholar 

  4. Mullen JT, Ribero D, Reddy SK, et al. Hepatic insufficiency and mortality in 1,059 noncirrhotic patients undergoing major hepatectomy. J Am Coll Surg. 2007;204:854–62.

    Article  PubMed  Google Scholar 

  5. Ikegami T, Shirabe K, Yoshizumi T, et al. Primary graft dysfunction after living donor liver transplantation is characterized by delayed functional hyperbilirubinemia. Am J Transplant. 2012;12:1886–97.

    Article  CAS  PubMed  Google Scholar 

  6. Ishiki Y, Ohnishi H, Muto Y, et al. Direct evidence that hepatocyte growth factor is a hepatotrophic factor for liver regeneration and has a potent antihepatitis effect in vivo. Hepatology. 1992;16:1227–35.

    CAS  PubMed  Google Scholar 

  7. Ijichi H, Taketomi A, Yoshizumi T, et al. Hyperbaric oxygen induces vascular endothelial growth factor and reduces liver injury in regenerating rat liver after partial hepatectomy. J Hepatol. 2006;45:28–34.

    Article  CAS  PubMed  Google Scholar 

  8. Ninomiya M, Shirabe K, Terashi T, et al. Deceleration of regenerative response improves the outcome of rat with massive hepatectomy. Am J Transplant. 2010;10:1580–7.

    Article  CAS  PubMed  Google Scholar 

  9. Zimmers TA, McKillop IH, Pierce RH, et al. Massive liver growth in mice induced by systemic interleukin 6 administration. Hepatology. 2003;38:326–34.

    Article  CAS  PubMed  Google Scholar 

  10. Webber EM, Bruix J, Pierce RH, Fausto N. Tumor necrosis factor primes hepatocytes for DNA replication in the rat. Hepatology. 1998;28:1226–34.

    Article  CAS  PubMed  Google Scholar 

  11. Lee DK, Saldivia VR, Nguyen T, et al. Modification of the terminal residue of apelin-13 antagonizes its hypotensive action. Endocrinology. 2005;146:231–6.

    Article  CAS  PubMed  Google Scholar 

  12. Tatemoto K, Hosoya M, Habata Y, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251:471–6.

    Article  CAS  PubMed  Google Scholar 

  13. Kidoya H, Takakura N. Biology of the apelin–APJ axis in vascular formation. J Biochem. 2012;152:125–31.

    Article  CAS  PubMed  Google Scholar 

  14. Scimia MC, Hurtado C, Ray S, et al. APJ acts as a dual receptor in cardiac hypertrophy. Nature. 2012;488:394–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yasuzaki H, Yoshida S, Hashimoto T, et al. Involvement of the apelin receptor APJ in Fas-induced liver injury. Liver Int. 2013;33:118–26.

    Article  CAS  PubMed  Google Scholar 

  16. Tiani C, Garcia-Pras E, Mejias M, et al. Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension. J Hepatol. 2009;50:296–305.

    Article  CAS  PubMed  Google Scholar 

  17. Reichenbach V, Ros J, Fernandez-Varo G, et al. Prevention of fibrosis progression in CCl4-treated rats: role of the hepatic endocannabinoid and apelin systems. J Pharmacol Exp Ther. 2012;340:629–37.

    Article  CAS  PubMed  Google Scholar 

  18. Chu J, Zhang H, Huang X, et al. Apelin ameliorates TNF-alpha-induced reduction of glycogen synthesis in the hepatocytes through G protein-coupled receptor APJ. PLoS One. 2013;8:e57231.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Higgins GM, Anderson RM. Experimental pathology of the liver: I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol. 1931;12:186–202.

    Google Scholar 

  20. Gavioli R, Risso A, Smilovich D, et al. CD69 molecule in human neutrophils: its expression and role in signal-transducing mechanisms. Cell Immunol. 1992;142:186–96.

    Article  CAS  PubMed  Google Scholar 

  21. Liu K, He X, Lei XZ, et al. Pathomorphological study on location and distribution of Kupffer cells in hepatocellular carcinoma. World J Gastroenterol. 2003;9:1946–9.

    PubMed  Google Scholar 

  22. Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83.

    Article  CAS  PubMed  Google Scholar 

  23. Ding BS, Nolan DJ, Butler JM, et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature. 2010;468:310–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. da Silva CG, Studer P, Skroch M, et al. A20 promotes liver regeneration by decreasing SOCS3 expression to enhance IL-6/STAT3 proliferative signals. Hepatology. 2013;57:2014–25.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Leeper NJ, Tedesco MM, Kojima Y, et al. Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation. Am J Physiol Heart Circ Physiol. 2009;296:H1329–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ringelhan M, Schmid RM, Geisler F. The NF-kappaB subunit RelA/p65 is dispensable for successful liver regeneration after partial hepatectomy in mice. PLoS One. 2012;7:e46469.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Han S, Englander EW, Gomez GA, et al. Pancreatitis activates pancreatic apelin–APJ axis in mice. Am J Physiol Gastrointest Liver Physiol. 2013;305:G139–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Meijer C, Wiezer MJ, Diehl AM, et al. Kupffer cell depletion by CI2MDP-liposomes alters hepatic cytokine expression and delays liver regeneration after partial hepatectomy. Liver. 2000;20:66–77.

    Article  CAS  PubMed  Google Scholar 

  29. Takeishi T, Hirano K, Kobayashi T, et al. The role of Kupffer cells in liver regeneration. Arch Histol Cytol. 1999;62:413–22.

    Article  CAS  PubMed  Google Scholar 

  30. Abshagen K, Eipel C, Kalff JC, et al. Loss of NF-kappaB activation in Kupffer cell-depleted mice impairs liver regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1570–7.

    Article  CAS  PubMed  Google Scholar 

  31. Yamada Y, Kirillova I, Peschon JJ, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci USA. 1997;94:1441–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Brenndorfer ED, Weiland M, Frelin L, et al. Anti-tumor necrosis factor alpha treatment promotes apoptosis and prevents liver regeneration in a transgenic mouse model of chronic hepatitis C. Hepatology. 2010;52:1553–63.

    Article  PubMed  Google Scholar 

  33. Cressman DE, Greenbaum LE, DeAngelis RA, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996;274:1379–83.

    Article  CAS  PubMed  Google Scholar 

  34. Jin X, Zhang Z, Beer-Stolz D, et al. Interleukin-6 inhibits oxidative injury and necrosis after extreme liver resection. Hepatology. 2007;46:802–12.

    Article  CAS  PubMed  Google Scholar 

  35. Yang K, Du C, Cheng Y, et al. Augmenter of liver regeneration promotes hepatic regeneration depending on the integrity of Kupffer cell in rat small-for-size liver transplantation. J Surg Res. 2013;183:922–8.

    Article  CAS  PubMed  Google Scholar 

  36. Tian Y, Jochum W, Georgiev P, et al. Kupffer cell-dependent TNF-alpha signaling mediates injury in the arterialized small-for-size liver transplantation in the mouse. Proc Natl Acad Sci USA. 2006;103:4598–603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Melgar-Lesmes P, Casals G, Pauta M, et al. Apelin mediates the induction of profibrogenic genes in human hepatic stellate cells. Endocrinology. 2010;151:5306–14.

    Article  CAS  PubMed  Google Scholar 

  38. Lam SP, Luk JM, Man K, et al. Activation of interleukin-6-induced glycoprotein 130/signal transducer and activator of transcription 3 pathway in mesenchymal stem cells enhances hepatic differentiation, proliferation, and liver regeneration. Liver Transpl. 2010;16:1195–206.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number 26861081.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohei Yoshiya.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshiya, S., Shirabe, K., Imai, D. et al. Blockade of the apelin–APJ system promotes mouse liver regeneration by activating Kupffer cells after partial hepatectomy. J Gastroenterol 50, 573–582 (2015). https://doi.org/10.1007/s00535-014-0992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-014-0992-5

Keywords

Navigation