Skip to main content
Log in

Randomized Approximation for the Set Multicover Problem in Hypergraphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Let \(b\in {\mathbb {N}}_{\ge 1}\) and let \({\mathcal {H}}=(V,{\mathcal {E}})\) be a hypergraph with maximum vertex degree \({\varDelta }\) and maximum edge size \(l\). A set \(b\)-multicover in \({\mathcal {H}}\) is a set of edges \(C \subseteq {\mathcal {E}}\) such that every vertex in \(V\) belongs to at least \(b\) edges in \(C\). \({\textsc {set }}\, b\text {-}{\textsc {multicover}}\) is the problem of finding a set \(b\)-multicover of minimum cardinality, and for \(b=1\) it is the fundamental set cover problem. Peleg et al. (Algorithmica 18(1):44–66, 1997) gave a randomized algorithm achieving an approximation ratio of \(\delta \cdot \big (1-\big (\frac{c}{n}\big )^\frac{1}{\delta }\big )\), where \(\delta := {\varDelta }- b + 1\) and \(c>0\) is a constant. As this ratio depends on the instance size \(n\) and tends to \(\delta \) as \(n\) tends to \(\infty \), it remained an open problem whether an approximation ratio of \(\delta \alpha \) with a constant \(\alpha < 1\) can be proved. In fact, the authors conjectured that for any fixed \({\varDelta }\) and \(b\), the problem is not approximable within a ratio smaller than \(\delta \), unless \({\mathcal {P}}={\mathcal {NP}}\). We present a randomized algorithm of hybrid type for \({\textsc {set }}\, b\text {-}{\textsc {multicover}}\), \(b \ge 2\), combining LP-based randomized rounding with greedy repairing, and achieve an approximation ratio of \(\delta \cdot \left( 1 - \frac{11({\varDelta }- b)}{72l} \right) \) for hypergraphs with maximum edge size \(l \in {\mathcal {O}}\left( \max \big \{(nb)^\frac{1}{5},n^\frac{1}{4}\big \}\right) \). In particular, for all hypergraphs where \(l\) is constant, we get an \(\alpha \delta \)-ratio with constant \(\alpha < 1\). Hence the above stated conjecture does not hold for hypergraphs with constant \(l\) and we have identified the boundedness of the maximum hyperedge size as a relevant parameter responsible for approximations below \(\delta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We may assume that the minimum vertex degree is at least \(b\), because otherwise the problem has no solution.

References

  1. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  2. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. J. Algorithms 39(2), 137–144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, P., DasGupta, B., Sontag, E.: Randomized approximation algorithms for set multicover problems with applications to reverse engineering of protein and gene networks. Discrete Appl. Math. 155(6–7), 733–749 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chvátal, V.: A greedy heuristic for the set covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. El Ouali, M., Fohlin, H., Srivastav, A.: An Approximation Algorithm for the Partial Vertex Cover Problem in Hypergraphs. J. Comb. Optim. (2014). doi:10.1007/s10878-014-9793-2

  6. El Ouali, M., Fohlin, H., Srivastav, A.: A randomised approximation algorithm for the hitting set problem. Theor. Comput. Sci. 555, 23–34 (2014)

    Article  MATH  Google Scholar 

  7. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–201 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frieze, A., Jerrum, M.: Improved Approximation Algorithms for MAX \(k\)-CUT and MAX BISECTION. Algorithmica 18, 67–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B.: Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248. Springer Berlin Heidelberg (1998)

  11. Hall, N.G., Hochbaum, D.S.: A fast approximation algorithm for the multicovering problem. Discrete Appl. Math. 15, 35–40 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput. 11(3), 555–556 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jäger, G., Srivastav, A.: Improved approximation algorithms for maximum graph partitioning problems. J. Comb. Optim. 10(2), 133–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)

    Article  MATH  Google Scholar 

  16. Krivelevich, J.: Approximate set covering in uniform hypergraphs. J. Algorithms 25(1), 118–143 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13(4), 383–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peleg, D., Schechtman, G., Wool, A.: Randomized approximation of bounded multicovering problems. Algorithmica 18(1), 44–66 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Munstermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Ouali, M., Munstermann, P. & Srivastav, A. Randomized Approximation for the Set Multicover Problem in Hypergraphs. Algorithmica 74, 574–588 (2016). https://doi.org/10.1007/s00453-014-9962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9962-9

Keywords

Navigation