Skip to main content
Log in

Subterranean fragmentation of magma during conduit initiation and evolution in the shallow plumbing system of the small-volume Jagged Rocks volcanoes (Hopi Buttes Volcanic Field, Arizona, USA)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Monogenetic volcanoes have limited magma supply and lack long-lived sustained magma plumbing systems. They erupt once, often from multiple vents and sometimes over several years, and are rarely or never re-activated. Eruptive behavior is very sensitive to physical processes (e.g., volatile exsolution, magma-water interaction) occurring in the later stages of magma ascent at shallow crustal depths (<1 km), which yield a spectrum of eruptive styles including weak to moderate explosive activity, violent phreatomagmatism, and lava effusion. Jagged Rocks Complex in the late Miocene Hopi Buttes Volcanic field (Arizona, USA) exposes the frozen remnants of the feeding systems for one or a few monogenetic volcanoes. It provides information on how a shallow magmatic plumbing system evolved within a stable non-marine sedimentary basin, and the processes by which magma flowing through dikes fragmented and conduits were formed. We have identified three main types of fragmental deposits, (1) buds (which emerge from dikes), (2) pyroclastic massifs, and (3) diatremes; these represent three different styles and intensities of shallow-depth magma fragmentation. They may develop successively and at different sites during the evolution of a monogenetic volcano. The deposits consist of a mixture of pyroclasts with varying degrees of welding and country-rock debris in various proportions. Pyroclasts are commonly welded together, but also reveal in places features consistent with phreatomagmatism, such as blocky shapes, dense groundmasses, and composite clasts (loaded and cored). The extent of fragmentation and the formation of subterranean open space controlled the nature of the particles and the architecture and geometry of these conduit structures and their deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alibert C, Michard A, Albaréde F (1986) Isotope and trace element geochemistry of Colorado Plateau volcanics. Geochimica Et Cosmochimica Acta 50:2735–2750

    Article  Google Scholar 

  • Andrews RG, White JDL, Dürig T, Zimanowski B (2015) Simulating maar–diatreme volcanic systems in bench-scale experiments. J Geol Soc. doi:10.1144/jgs2015-073

  • Barnett W (2004) Subsidence breccias in kimberlite pipes—an application of fractal analysis. Lithos 76(1–4):299–316

    Article  Google Scholar 

  • Billingsley GH, Block D, Redsteer MH (2013) Geologic map of the Winslow 30′ × 60′ quadrangle, Coconino and Navajo counties, Northern Arizona. USGS Scientific Investigations, Map 3247, pamphlet. p 25. http://pubs.usgs.gov/sim/3247/

  • Brenna M, Cronin SJ, Smith IEM, Sohn YK, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Mineral Petrol 160:931–950

    Article  Google Scholar 

  • Brown RJ, Kavanagh J, Sparks RSJ, Tait M, Field M (2007) Mechanically disrupted and chemically weakened zones in segmented dike systems cause vent localization: evidence from kimberlite volcanic systems. Geology 35(9):815–818

    Article  Google Scholar 

  • Brown RJ, Gernon T, Stiefenhofer J, Field M (2008) Geological constraints on the eruption of the Jwaneng Centre kimberlite pipe, Botswana. J Volcanol Geotherm Res 174(1–3):195–208

    Article  Google Scholar 

  • Bruce PM, Huppert HE (1989) Thermal control of basaltic fissure eruptions. Nature 342:665–667

    Article  Google Scholar 

  • Bruce PM, Huppert HE (1990) Solidification and melting along dikes by the laminar flow of basaltic magma. In: Ryan MP (ed) Magma transport and storage. Wiley, London, pp 87–101

    Google Scholar 

  • Camus G (1975) La Chaine des Puys (Massif Central Francais): étude structurale et volcanologique, these, 319 pp. Univ. de Clermont-Ferrand, Clermont

    Google Scholar 

  • Carey RJ, Houghton B, Sable J, Wilson C (2007) Contrasting grain size and componentry in complex proximal deposits of the 1886 Tarawera basaltic Plinian eruption. Bull Volcanol 69(8):903–926

    Article  Google Scholar 

  • Clement CR (1982) A comparative geological study of some major kimberlite pipes in northern Cape and Orange Free State. [PhD Thesis]: University of Cape Town, South Africa, p 432. https://open.uct.ac.za/handle/11427/12784

  • Clement CR, Reid AM (1989) The origin of kimberlite pipes: an interpretation based on a synthesis of geological features displayed by southern African occurrences. In: Ross J, Jacques AJ, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks. Blackwell Scientific Publications, Carlton, pp 632–646

    Google Scholar 

  • Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 331–343

  • Cooley ME, Harshbarger JW, Akers JP, Hardt WF (1969) Regional hydrogeology of the Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah. USGS Professional Paper 521-A:1–61

    Google Scholar 

  • Crow R, Karlstrom K, Asmerom Y, Schmandt B, Polyak V, DuFrane SA (2011) Shrinking of the Colorado Plateau via lithospheric mantle erosion: evidence from Nd and Sr isotopes and geochronology of Neogene basalts. Geology 39:27–30

    Article  Google Scholar 

  • Delaney PT (1982) Rapid intrusion of magma into wet rock: groundwater flow due to pore pressure increases. J Geophys Res 87:7739–7756

    Article  Google Scholar 

  • Delaney PT, Pollard DD (1981) Deformation of Host Rocks and Flow of Magma during Growth of Minette Dikes and Breccia-bearing Intrusions near Ship Rock, New Mexico. In: Survey, USGS (ed) Volume Geological Survey Professional Paper 1202. United States Government Printing Office, Washington, pp 1–61

    Google Scholar 

  • Dobran F (2001) Volcanic processes: mechanisms in material transport. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  • Doubik P, Hill BE (1999) Magmatic and hydromagmatic conduit development during the 1975 Tolbachik Eruption, Kamchatka, with implications for hazards assessment at Yucca Mountain, NV. J Volcanol Geotherm Res 91:43–64

    Article  Google Scholar 

  • Downes PJ, Ferguson D, Griffin BJ (2007) Volcanology of the Aries micaceous kimberlite, central Kimberley basin, Western Australia. J Volcanol Geotherm Res 159(1–3):85–107

    Article  Google Scholar 

  • Fedotov SA, Markhinin YK (1983) The Great Tolbachik Fissure Eruption, 341 pp. Cambridge Univ. Press, New York

    Google Scholar 

  • Genareau K, Valentine GA, Moore G, Hervig RL (2010) Mechanisms for transition in eruptive style at a monogenetic scoria cone revealed by microtextural analyses. Bull Volcanol 72:593–607

    Article  Google Scholar 

  • Geshi N, Neri M (2014) Dynamic feeder dyke systems in basaltic volcanoes: the exceptional example of the 1809 Etna eruption (Italy). Front Earth Sci 2:13. doi:10.3389/feart.2014.00013

  • Geshi N, Kusumoto S, Gudmundsson A (2010) Geometric difference between non-feeder and feeder dikes. Geology 38:195–198. doi:10.1130/G30350.1

    Article  Google Scholar 

  • Geshi N, Németh K, Oikawa T (2011) Growth of phreatomagmatic explosion craters: a model inferred from Suoana crater in Miyakejima Volcano, Japan. J Volcanol Geoth Res 201(1–4):30–38

    Article  Google Scholar 

  • Graettinger AH, Valentine GA, Sonder I, Ross PS, White JDL, Taddeucci J (2014) Maar-diatreme geometry and deposits: subsurface blast experiments with variable explosion depth. Geochem Geophys Geosyst 15:740–764. doi:10.1002/2013GC005198

    Article  Google Scholar 

  • Hamilton CW, Thordarson T, Fagents SA (2010) Explosive lava-water interactions I: architecture and emplacement chronology of volcanic rootless cone groups in the 1783–1784 Laki lava flow, Iceland. Bull Volcanol. doi:10.1007/s00445-009-0330-6

  • Hooten JA, Ort MH (2002) Peperite as a record of early-stage phreatomagmatic fragmentation processes: an example from the Hopi Buttes volcanic field, Navajo Nation, Arizona, USA. J Volcanol Geotherm Res 114(1–2):95–106

    Article  Google Scholar 

  • Houghton BF, Nairn IA (1991) The 1976–1982 Strombolian and phreatomagmatic eruptions of White Island, New Zealand: eruptive and depositional mechanisms at a ‘wet’ volcano. Bull Volc 54:25–49

    Article  Google Scholar 

  • Houghton B, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volc 51:451–462

    Article  Google Scholar 

  • Jébrak M (1997) Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore Geol Rev 12(3):111–134

    Article  Google Scholar 

  • Keating GN, Valentine GA, Krier DJ, Perry FV (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70(5):563–582

    Article  Google Scholar 

  • Kiyosugi K, Connor CB, Wetmore PH, Ferwerda BP, Germa AM, Connor LJ, Hintz AR (2012) Relationship between dike and volcanic conduit distribution in a highly eroded monogenetic volcanic field: San Rafael, Utah, USA. Geology 40:695–698

    Article  Google Scholar 

  • Kjargaard BA, Hoernle K, Lefebvre NS, Ort MH, Ross P-S, Valentine GA, Vazquez JA, White JDL (2014) Petrology of the Hopi Buttes Volcanic Field: implications for near-surface volcanism. In: Carrasco-Núñez G, Aranda-Gómez JJ, Ort MH, Silva-Corona JJ (eds) 5th International Maar Conference Abstracts Volume. Universidad Nacional Autónoma de México, Centro de Geociencias, Juriquilla, Qro. México, pp 58–59

    Google Scholar 

  • Kurszlaukis S, Barnett WP (2003) Volcanological and structural aspects of the Venetia kimberlite cluster—a case study of South African kimberlite maar-diatreme volcanoes. S Afr J Geol 106(2–3):165–192

    Article  Google Scholar 

  • Kurszlaukis S, Mahotkin I, Rotman AY, Kolesnikov GV, Makovchuk IV (2009) Syn- and post-eruptive volcanic processes in the Yubileinaya kimberlite pipe, Yakutia, Russia, and implications for the emplacement of South African-style kimberlite pipes. Lithos 112(1):579–591

    Article  Google Scholar 

  • Le Corvec N, Spörli BK, Rowland JV, Lindsay J (2013) Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth Sci Rev 124:96–114

    Article  Google Scholar 

  • Lefebvre NS, White JDL, Kjarsgaard BA (2012) Spatter-dike reveals subterranean magma diversions: consequences for small multivent basaltic eruptions. Geology 40(5):423–426

    Article  Google Scholar 

  • Lefebvre NS, White JDL, Kjarsgaard BA (2013) Unbedded diatreme deposits reveal maar-diatreme-forming eruptive processes: Standing Rocks West, Hopi Buttes, Navajo Nation, USA. Bull Volcanol 75:1–17. doi:10.1007/s00445-013-0739-9

    Article  Google Scholar 

  • Lefebvre NS, White JDL, Kjarsgaardb BA (2016) Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA. J Volcanol Geotherm Res 310:186–208. doi:10.1016/j.jvolgeores.2015.12.007

    Article  Google Scholar 

  • Levander A, Schmandt B, Miller MS, Liu K, Karlstrom KE, Crow RS, Lee C-TA, Humphreys ED (2011) Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling. Nature 472:461–465

    Article  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. Geolines 15:63–74

    Google Scholar 

  • Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. J Volcanol Geotherm Res 159(1–3):4–32

    Article  Google Scholar 

  • Lorenz V, Zimanowski B (1984) Fragmentation of alkali basaltic magmas and wall-rocks by explosive volcanism. In: Kornprobst J (ed) IIIéme Conference International Kimberlites. Univ. de Clermont-Ferrand, Clermont, France, pp 73–83

    Google Scholar 

  • Macedonio G, Dobran F, Neri A (1994) Erosion processes in volcanic conduits and application to the AD 79 eruption of Vesuvius. Earth Planet Sci Lett 121:137–152

    Article  Google Scholar 

  • Martin U, Nemeth K (2005) Eruptive and depositional history of a Pliocene tuff ring that developed in a fluvio-lacustrine basin: Kissomlyò volcano (western Hungary). J Volcanol Geotherm Res 147:342–356

    Article  Google Scholar 

  • Martin U, Nemeth K (2006) How Strombolian is a “Strombolian” scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcán Ceboruco, (Mexico) and Al Haruj (Libya). J Volcanol Geotherm Res 155:104–118

    Article  Google Scholar 

  • McBirney AR (1959) Factors governing the emplacement of volcanic necks. American J Sci 257:431–448

    Google Scholar 

  • McClintock M, White JDL (2006) Large phreatomagmatic vent complex at Coombs Hills, Antarctica: wet, explosive initiation of flood basalt volcanism in the Ferrar-Karoo LIP. Bull Volcanol 68(3):215–239

    Article  Google Scholar 

  • Muirhead JD, Kattenhorn SA, Le Corvec N (2015) Varying styles of magmatic strain accommodation across the East African Rift. Geochemistry, Geophysics, Geosystems 16, doi: 10.1002/2015GC005918

  • Muirhead JD, Van Eaton AR, Re G, White JDL, Ort MH (2016) Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA. Bull Volcanol

  • Nemeth K (2010) Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. In Cañón-Tapia E and Szakács A (eds) What Is a Volcano?: Geological Society of America Special Paper 470:43–66, doi: 10.1130/2010.2470(04)

  • Quareni F, Ventura G, Mulargia F (2001) Numerical modelling of the transition from fissure- to central-type activity on volcanoes: a case study from Salina Island, Italy. Phys Earth Planet Inter 124:213–221

    Article  Google Scholar 

  • Re G, White JDL, Ort MH (2015) Dikes, sills, and stress-regime evolution during emplacement of the Jagged Rocks Complex, Hopi Buttes Volcanic Field, Navajo Nation, USA. J Volcanol Geotherm Res 295:65–79. doi:10.1016/j.jvolgeores.2015.01.009

    Article  Google Scholar 

  • Reid MR, Bouchet RA, Blichert-Toft J, Levander A, Liu K, Miller MS, Ramos CS (2012) Melting under the Colorado Plateau, USA. Geology 40(5):387–390

    Article  Google Scholar 

  • Ross P-S, White JDL (2006) Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica. J Volcanol Geotherm Res 149:62–84

    Article  Google Scholar 

  • Ross P-S, White JDL, Zimanowski B, Büttner R (2008a) Rapid injection of particles and gas into non-fluidized granular material, and some volcanological implications. Bull Volcanol 70(10):1151–1168

    Article  Google Scholar 

  • Ross P-S, White JDL, Zimanowski B, Büttner R (2008b) Multiphase flow above explosion sites in debris-filled volcanic vents: insights from analogue experiments. J Volcanol Geotherm Res 178(1):104–112

    Article  Google Scholar 

  • Ross P-S, White JDL, Valentine GA, Taddeucci J, Sonder I, Andrews RG (2013) Experimental birth of a maar–diatreme volcano. J Volcanol Geoth Res 260:1–12

    Article  Google Scholar 

  • Rosseel JB, White JDL, Houghton BF (2006) Complex bombs of phreatomagmatic eruptions: role of agglomeration and welding in vents of the 1886 Rotomahana Eruption, Tarawera, New Zealand. J Geophys Res 111(B12205):1–24. doi:10.1029/2005JB004073

    Google Scholar 

  • Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336

  • Schipper CI, Jakobsson SP, White JDL, Palin JM, Bush-Marcinowski T (2015) The Surtsey magma series. Scientific Reports 5, doi:10.1038/srep11498

  • Seghedi I, Maicher D, Kurszlaukis S (2009) Volcanology of Tuzo pipe (Gahcho Kué cluster)—root-diatreme processes re-interpreted. Lithos 112(1):553–565

    Article  Google Scholar 

  • Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geotherm Res 155:18–48

    Article  Google Scholar 

  • Sumner JM (1998) Formation of clastogenic lava flows during fissure eruption and scoria cone collapse: the 1986 eruption of. Izu-Oshima Volcano, eastern Japan: Bull Volcanol 60(3):195–212

    Google Scholar 

  • Thordarson T, Self S (1993) The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785. Bull Volcanol 55:233–263, doi:10.1007/BF00624353

  • Valentine GA (2012) Shallow plumbing systems for small-volume basaltic volcanoes, 2: evidence from crustal xenoliths at scoria cones and maars. J Volcanol Geotherm Res 223–224:47–63

    Article  Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177(4):857–873. doi:10.1016/j.volgeores.2008.01.050

    Article  Google Scholar 

  • Valentine GA, Groves KR (1996) Entrainment of country rock during basaltic eruptions of the Lucero Volcanic Field, New Mexico. J Geol 104:71–90

    Article  Google Scholar 

  • Valentine GA, White JDL (2012) Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology 40(12):1111–1114

    Article  Google Scholar 

  • Valentine GA, Perry FV, Krier DJ, Keating GN, Kelley RE, Cogbill AH (2006) Small volume basaltic volcanoes: eruptive products and processes, and post-eruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol Soc Am Bull 118:1313–1330. doi:10.1130/B25956.1

    Article  Google Scholar 

  • Valentine GA, Krier DJ, Perry FV, Heiken G (2007) Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. J Volcanol Geotherm Res 161:57–80. doi:10.1016/j.jvolgeores.2006.11.003

    Article  Google Scholar 

  • Van Straaten BI, Kopylova MG, Russell JK, Webb KJ, Smith BSH (2009) Stratigraphy of the intra-crater volcaniclastic deposits of the Victor Northwest kimberlite, northern Ontario, Canada. Lithos 112(1):488–500

    Article  Google Scholar 

  • Vazquez JA, Ort MH (2006) Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. J Volcanol Geotherm Res 154(3–4):222–236

    Article  Google Scholar 

  • Wadsworth FB, Kennedy BM, Branney MJ, von Aulock FW, Lavallé Y, Menendez A (2015) Exhumed conduit records magma ascent and drain-back during a Strombolian eruption at Tongariro volcano, New Zealand. Bull Volcanol 77:71. doi:10.1007/s00445-015-0962-7

  • White JDL (1990) Depositional architecture of a maar-pitted playa: sedimentation in the Hopi Buttes volcanic field, northeastern Arizona, U.S.A. Sediment Geol 67:55–84

    Article  Google Scholar 

  • White JDL (1991) Maar–diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258

    Article  Google Scholar 

  • White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34(8):677–680

    Article  Google Scholar 

  • White JDL, Ross P-S (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29

    Article  Google Scholar 

  • Williams H (1936) Pliocene volcanoes of the Navajo-Hopi country. Geol Soc Am Bull 47:111–172

    Article  Google Scholar 

  • Wilson L, Head JW (1981) Ascent and eruption of basaltic magma on the earth and moon. J Geophys Res 86:2971–3001

    Article  Google Scholar 

  • Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation, grain-size, scanning electron microscopy, and experimental studies. J Volcanol Geotherm Res 17:31–63

    Article  Google Scholar 

  • Wohletz KH (1986) Explosive magma-water interactions: thermodynamics, explosion mechanisms, and field studies. Bull Volcanol 48:245–264

    Article  Google Scholar 

  • Wood CA (1980) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7:387–413

    Article  Google Scholar 

  • Wylie JJ, Helfrich KR, Dade B, Lister JR, Salzig JF (1999) Flow localization in fissure eruptions. Bull Volcanol 60:432–440

    Article  Google Scholar 

  • Zimanowski B, Frohlich G, Lorenz V (1991) Quantitative experiments on phreatomagmatic explosions. J Volcanol Geotherm Res 48:341–358

  • Zimanowski B, Büttner R (2002) Dynamic mingling of magma and liquefied sediments. J Volcanol Geotherm Res 114:37–44

    Article  Google Scholar 

  • Zimanowski B, Büttner R (2003) Phreatomagmatic explosions in subaqueous volcanism. In: Explosive Subaqueous Volcanism, American Geophysical Union, pp. 51–60, doi:10.1029/140GM03

Download references

Acknowledgments

This work is supported by the University of Otago Scholarship (G.Re), MBIE through subcontract to GNS Science, NZ (J.D.L. White) and the New Zealand Fulbright-Ministry of Science and Innovation Award (J.D. Muirhead). We thank Pierre-Simon Ross, who reviewed an earlier version of this manuscript, for his comments and stimulating discussion. We further thank Alexa Van Eaton, Fabrizio Alfano, and Ramon Arrowsmith from Arizona State University for the collaboration on the balloon-survey, and for their help on the field. We gratefully acknowledge the editor Stephen Self, Brittain Hill and an anonymous reviewer, whose insightful comments helped us significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Re.

Additional information

Editorial responsibility: S. Self, Acting Executive Editor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Re, G., White, J.D.L., Muirhead, J.D. et al. Subterranean fragmentation of magma during conduit initiation and evolution in the shallow plumbing system of the small-volume Jagged Rocks volcanoes (Hopi Buttes Volcanic Field, Arizona, USA). Bull Volcanol 78, 55 (2016). https://doi.org/10.1007/s00445-016-1050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1050-3

Keywords

Navigation