Skip to main content
Log in

Ground-coupled airwaves at Pavlof Volcano, Alaska, and their potential for eruption monitoring

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

An abnormally high number of explosion quakes were noted during the monitoring effort for the 2007 eruption of Pavlof Volcano on the Alaska Peninsula. In this study, we manually cataloged the explosion quakes from their characteristic ground-coupled airwaves. This study investigates how the ground-coupled airwaves might be used in a monitoring or analysis effort by estimating energy release and gas mass release. Over 3 × 104 quakes were recorded. The energy release from the explosions is approximated to be 3 × 1011 J, and the total gas mass (assuming 100 % water) released was 450 t. The tracking of explosion quakes has the potential to estimate relative eruption intensity as a function of time and is thus a useful component of a seismic monitoring program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Braun T, Ripepe M (1993) Interaction of seismic and air waves recorded at Stromboli Volcano. Geophys Res Lett 20(1):65–68

    Article  Google Scholar 

  • Brekovskikh LM (1980) Waves in layered media (R. T. Beyer, trans.). Academic Press, New York

    Google Scholar 

  • Chouet BA, Matoza RS (2013) A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. J Volcanol Geotherm Res 252:108–175

    Article  Google Scholar 

  • De Angelis S, Fee D, Haney M, Schneider D (2012) Detecting hidden volcanic explosions from Mt. Cleveland volcano, Alaska with infrasound and ground-coupled air waves. Geophys Res Lett 39:L213312. doi:10.1029/2012GL053635

    Article  Google Scholar 

  • De la Cruz-Reyna S (1991) Poisson-distributed patterns of explosive eruptive activity. Bull Volcanol 54:57–67

    Article  Google Scholar 

  • Garces MA, Hansen RA (1998) Waveform analysis of seismoacoustic signals radiated during the fall 1996 eruption of Pavlof volcano, Alaska. Geophys Res Lett 25(7):1051–1054

    Article  Google Scholar 

  • Garces MA, McNutt SR, Hansen RA, Eichelberger JC (2000) Application of wave-theoretical seismoacoustic models to the interpretation of explosion and eruption tremor signals radiated by Pavlof volcano, Alaska. J Geophys Res 105(B2):3039–3058

    Article  Google Scholar 

  • Hagerty MT, Schwartz SY, Garces MA, Protti M (2000) Analysis of seismic and acoustic observations at Arenal volcano, Costa Rica, 1995-1997. J Volcanol Geotherm Res 101:27–65

  • Haney MM, van Wuk K, Preston LA, Aldridge DF (2009) Observation and modeling of source effects in coda wave interferometry at Pavlof volcano. The Leading Edge 28.5:554–560

  • Ichihara M, Takeo M, Yokoo A, Oikawa J, Ohminato T (2012) Monitoring volcanic activity using correlationpatterns between infrasound and ground motion. Geophys Res Lett 39:L04304. doi:10.1029/2011GL050542

    Article  Google Scholar 

  • James MR, Lane SJ, Houghton BA (2013) In: Fargents SA, Gregg TKP, Lopes MC (eds) “Unsteady” explosive eruptions: Strombolian activity in modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson JB, Aster RC, Ruiz MC, Malone SD, McChesney PJ, Lees JM, Kyle PR (2003) Interpretation and utility of infrasonic records from erupting volcanoes. J Volcanol Geotherm Res 121:15–63

    Article  Google Scholar 

  • Johnson JB, Lees JM (2000) Plugs and chugs—seismic and acoustic observations of degassing explosions at Karymsky, Russia and Sangay, Ecuador. J Volcanol Geotherm Res 101:67–82

    Article  Google Scholar 

  • Johnson JB, Lees JM, Gordeev EI (1998) Degassing explosions at Karymsky volcano, Kamchatka. Geophys Res Lett 25(21):3999–4002

    Article  Google Scholar 

  • Johnson JB, Malone SD (2007) Ground-coupled acoustic air waves from Mount St. Helens provide constraints on the may 18, 1980 eruption. Earth Planet Sci Lett 258:16–31

    Article  Google Scholar 

  • Kennedy GC, Waldron HH (1955) Geology of Pavlof volcano and vicinity Alaska. Geol Surv Bull 1028-A

  • Kinney G, Graham K (1985) Explosive shocks in air, 2nd edn. Springer Science + Business Media, New York. doi:10.1007/978-3-642-86682-1

    Book  Google Scholar 

  • McGetchin TR, Chouet BA (1979) Energy budget of the volcano Stromboli, Italy. Geophys Res Lett 6:317–320. doi:10.1029/GL006i004p00317

    Article  Google Scholar 

  • McNutt SR (1986) Observations and analysis of the B-type earthquakes, explosions, and volcanic tremor at Pavlof volcano, Aslaska. Bull Seismol Soc Am 76(1):153–175

    Google Scholar 

  • McNutt SR (1999) Eruptions of Pavlof volcano, Alaska, and their possible modulation by ocean load and tectonic stresses: re-evaluation of the hypothesis based on new data from 1984 to 1998. Pure Appl Geophys 155:701–712

    Article  Google Scholar 

  • McNutt SR, Beavan RJ (1987) Eruptions of Pavlof volcano and their possible modulation by ocean load and tectonic stresses. Jourmal of Geophysical Research 92(11):509–511 523

    Google Scholar 

  • McNutt SR, Jacob KH (1986) Determination of large-scale velocity structure of the crust and upper mantle in the vicinity of Pavlof volcano, Alaska. J Geophys Res 91(B5):5013–5022

    Article  Google Scholar 

  • McNutt SR, Miller T, Taber JJ (1991) Pavlof volcano: seismological and geological evidence of increased explosivity during the 1986 eruptions. Bull Volcanol 53:86–98

    Article  Google Scholar 

  • McNutt SR, Thompson G, Johnson J, De Angelis S, Fee D (2015) Seismic and infrasonic monitoring. Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Chapter 63 of Encyclopedia of Volcanoes, 2nd edn. Elsevier, San Diego

  • Mori T, Burton M (2009) Quantification of the gas mass emittedduring single explosions on Stromboli with the SO2imaging camera. J Volcanol Geotherm Res 188:395–400. doi:10.1016/j.jvolgeores.2009.10.005

    Article  Google Scholar 

  • Petersen T, McNutt SR (2007) Seismo-acoustic signals associated with degassing explosions recorded at Shishaldin volcano, Alaska, 2003-2004. Bull Volcanol. doi:10.1007/s00445-006-0088-z

    Google Scholar 

  • Reyes CG, West ME (2011) The waveform suite: a robust platform for manipulating waveforms in MATLAB. Seismol Res Lett 82(1):104–110

    Article  Google Scholar 

  • Ripepe M (1996) Evidence for gas influence on volcanic seismic signals recorded at Stromboli. J Volcanol Geotherm Res 70:221–233

    Article  Google Scholar 

  • Ripepe M, Poggi P, Braun T, Gordeev E (1996) Infrasonic waves and volcanic tremor at Stromboli. Geophys Res Lett 23(2):181–184

    Article  Google Scholar 

  • Sabatier JM, Bass HE, Bolen LN (1986) Acoustically induced seismic waves. J Acoust Soc Am 80(2):646–649

    Article  Google Scholar 

  • Shimozuru D (1967) Discussion on the energy partition of volcanic eruption. Paper presented at the 14th General Assembly of IUGG, Symposium on Physical Volcanology, Zurich

  • Taddeucci J, Alatorre-Ibargüengoitia MA, Moroni M, Tornetta L, Capponi A, Scarlato P, Dingwell DB, De Rita D (2012) Physical parameterizationof Strombolian eruptions via experimentally-validated modelingof high-speed observations. Geophys Res Lett 39:L16306. doi:10.1029/2012GL052772

    Google Scholar 

  • Tamburello G, Aiuppa A, Kantzas EP, McGonigle AJS, Ripepe M (2012) Passive vs. active degassing modes at an open-vent volcano (Stromboli, Itlay). Earth Planet Sci Lett 359:106–116. doi:10.1016/j.epsl.2012.09.050

    Article  Google Scholar 

  • Thompson G, McNutt SR, Tytgat G (2002) Three distinct regimes of volcanic tremor associated with the eruption of Shishaldin volcano, Alaska 1999. Bull Volcanol 62:535–547

    Article  Google Scholar 

  • Vergniolle S, Boichu M, Caplan-Auerbach J (2004) Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska 1. Origin of Strombolian activity. J Volcanol Geotherm Res 137:109–134

    Article  Google Scholar 

  • Waythomas CF, Haney MM, Fee D, Schneider DJ, Wech A (2014) The 2013 eruption of Pavlof volcano, Alaska: a spatter eruption at an ice-and snow-clad volcano. Bull Volcanol. doi:10.1007/s00445-01400862-2

    Google Scholar 

  • Waythomas CF, Prejean SG, McNutt SR (2008) Alaska’s Pavlof volcano ends 11-year repose. EOS Trans Am Geophys Union 89(23):209–211

    Article  Google Scholar 

  • Winter JD (2010) Principles of igneous and metamorphic petrology, 2nd edn. Pearson Higher Ed., Upper Saddle River

    Google Scholar 

  • Witze A (2013) Financial blow for Alaskan volcano monitoring. Nature. doi:10.1038/nature.2013.13041

    Google Scholar 

  • Woulff G, McGetchin TR (1976) Acoustic noise from volcanoes: theory and experiment. Geophys J R Astron Soc 45:601–616

    Article  Google Scholar 

  • Yokoyama I (1956) Energetics in active volcanoes 2nd paper. Bull Earthq Res Inst XXXV:75–97

    Google Scholar 

Download references

Acknowledgments

We thank colleagues at UAF and USGS Anchorage for assistance with data and useful discussions. J. Power kindly gave permission to use data shown in Fig. 5. We would also like to thank Jacopo Taddeucci and two anonymous reviewers for their comments that greatly improved the clarity of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandra M. Smith.

Additional information

Editorial responsibility: J. Taddeucci

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, C.M., McNutt, S.R. & Thompson, G. Ground-coupled airwaves at Pavlof Volcano, Alaska, and their potential for eruption monitoring. Bull Volcanol 78, 52 (2016). https://doi.org/10.1007/s00445-016-1045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1045-0

Keywords

Navigation