Skip to main content
Log in

The Cerro Bitiche Andesitic Field: petrological diversity and implications for magmatic evolution of mafic volcanic centers from the northern Puna

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

An Erratum to this article was published on 25 August 2016

Abstract

The Cerro Bitiche Andesitic Field (CBAF) is one of the two largest mafic volcanic fields in northern Puna (22–24° S) and is spatially and temporally associated with ignimbrites erupted from some central Andean Altiplano-Puna Volcanic Complex calderas. The CBAF comprises seven scoria cones and widespread high-K calcalkaline lava flows that cover an area of 200 km2. Although all erupted rocks have a relatively narrow chemical range (56–62 % SiO2, 3–6 % MgO), there is a broad diversity of mineral compositions and textures. The least evolved lavas (∼58–61 % SiO2) are high-Mg andesites with scarce (<10 %) microphenocrysts of either olivine or orthopyroxene. The small compositional range and low phenocryst content indicate evolution controlled by low percentages (<10 %) of fractional crystallization of olivine and clinopyroxene of magmas similar to the least evolved rocks from the field, accompanied by assimilation during rapid ascent through the crust. Evolved andesites (∼62 wt% SiO2), on the other hand, are porphyritic rocks with plagioclase + orthopyroxene + biotite and ubiquitous phenocryst disequilibrium textures. These magmas were likely stored in crustal reservoirs, where they experienced convection caused by mafic magma underplating, magma mixing, and/or assimilation. Trace element and mineral compositions of CBAF lavas provide evidence for complex evolution of distinct magma batches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allègre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  Google Scholar 

  • Barbey P, Ayalew D, Yirgu G (2005) Insight into origin of gabbro-dioritic cumulophyric aggregates from silicic ignimbrites: Sr and Ba zoning profiles of plagioclase phenocrysts from Oligocene Ethiopian Plateau rhyolites. Contrib Mineral Petrol 149:233–245

    Article  Google Scholar 

  • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petrol 115:103–111

    Article  Google Scholar 

  • Blatter DL, Carmichael IS (1998) Plagioclase-free andesites from Zitacuaro (Michoacan), Mexico: petrology and experimental constraints. Contrib Mineral Petrol 132:121–138

    Article  Google Scholar 

  • Brenna M, Cronin SJ, Smith IE, Sohn YK, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Mineral Petrol 160:931–950

    Article  Google Scholar 

  • Brugger CR, Hammer JE (2010) Crystallisation kinetics in continuous decompression experiments: Implications for interpreting natural magma ascent processes. J Petrol 51:1941–1965

    Article  Google Scholar 

  • Burns DH, de Silva SL, Tepley F, Schmitt AK, Loewen MW (2015) Recording the transition from flare-up to steady-state arc magmatism at the Purico–Chascon volcanic complex, northern Chile. Earth Planet Sci Lett 422:75–86

    Article  Google Scholar 

  • Cabrera AP, Caffe PJ (2009) The Cerro Morado Andesites: volcanic history and eruptive styles of a mafic volcanic field from northern Puna, Argentina. J S Am Earth Sci 28:113–131

    Article  Google Scholar 

  • Caffe PJ, Trumbull RB, Coira BL, Romer RL (2002) Petrogenesis of Early Neogene magmatism in the northern Puna; implications for magma genesis and crustal processes in the Central Andean Plateau. J Petrol 43:907–942

    Article  Google Scholar 

  • Caffe PJ, Trumbull RB, Siebel W (2012) Petrology of the Coyaguayma ignimbrite, northern Puna of Argentina: origin and evolution of a peraluminous high-SiO2 rhyolite magma. Lithos 134:179–200

    Article  Google Scholar 

  • Coira B, Caffe PJ, Ramirez A, Chayle W, Diaz A, Rosas S, Perez A, Perez EMB, Orosco O, Martinez M (2004) Hoja Geológica 2366-I/2166-III Mina Pirquitas, Provincia de Jujuy (escala 1:250.000). Servicio Geológico Minero Argentino, Instituto de Geología y Recursos Minerales, 269, 123 pp

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

    Article  Google Scholar 

  • de Silva SL (1989) The Altiplano–Puna volcanic complex of the central Andes. Geology 17:1102–1106

    Article  Google Scholar 

  • Déruelle B (1991) Petrology of Quaternary shoshonitic lavas of northwestern Argentina. In: Harmon RS, Rapela CW (eds.) Andean magmatism and its tectonic setting. Geol Soc Special Pub 265:201-217

  • Drew ST, Ducea MN, Schoenbohm LM (2009) Mafic volcanism on the Puna Plateau, NW Argentina: implications for lithospheric composition and evolution with an emphasis on lithospheric foundering. Lithosphere 1:305–318

    Article  Google Scholar 

  • Ducea MN, Seclaman AC, Murray KE, Jianu D, Schoenbohm LM (2013) Mantle-drip magmatism beneath the Altiplano-Puna plateau, central Andes. Geology 41:915–918

    Article  Google Scholar 

  • Dungan M, Davidson J (2004) Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: an example from the Chilean Andes. Geology 32:773–77

    Article  Google Scholar 

  • Erdmann S, Scaillet B, Kellett DA (2010) Xenocryst assimilation and formation of peritectic crystal clusters during magma contamination: an experimental study. J Volcanol Geotherm Res 198:355–367

    Article  Google Scholar 

  • Feeley TC, Sharp ZD (1996) Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers. Geology 24:1021–1024

    Article  Google Scholar 

  • Fougnot J, Pichavant M, Barbey P (1996) Biotite resorption in dacite lavas from northeastern Algeria. Beih Eur J Mineral 8:625–638

    Article  Google Scholar 

  • Fracchia D (2009) Volcanismo postcolapso de la Caldera Vilama, Mioceno superior, Puna argentino–boliviana: Mecanismos eruptivos y Petrogénesis. PhD thesis, Facultad de Ciencias Naturales y Museo, Universidad Nacional de la Plata, Argentine

  • Gardeweg M, Ramirez CF (1985) Hoja Río Zapaleri, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, 66,122 pp

  • Guzmán S, Petrinovic IA, Brod JA (2006) Pleistocene mafic volcanoes in the Puna–Cordillera Oriental boundary, NW-Argentina. J Volcanol Geotherm Res 158:51–69

    Article  Google Scholar 

  • Guzmán S, Petrinovic IA, Brod JA, Hongn FD, Seggiaro RE, Montero C, Carniel R, Dantas EL, Sudo M (2011) Petrology of the Luingo caldera (SE margin of the Puna plateau): a middle Miocene window of the arc–back arc configuration. J Volcanol Geotherm Res 200:171–191

    Article  Google Scholar 

  • Har N (2005) Reaction coronas around quartz xenocrysts in the basaltic andesite from Detunata (Apuseni Mountains, Romania). Geol Carpath 56:369–378

    Google Scholar 

  • Har N, Rusu AM (2000) Diffusion coronas around quartz xenocrysts in basaltic andesite from Capus (Cionca Hill, Gilau Mountains-Romania). Studia Univ Babes-Bolyai, Geol 45:35–54

    Article  Google Scholar 

  • Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic age. J Petrol 43:1857–1883

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Hoke L, Hilton DR, Lamb SH, Hammerschmidt K, Friedrichsen H (1994) 3 He evidence for a wide zone of active mantle melting beneath the Central Andes. Earth Planet Sci Lett 128:341–355

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1985) Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth Planet Sci Lett 74:371–386

    Article  Google Scholar 

  • Iriarte R (2012) The Cerro Guacha Caldera Complex: an upper Miocene-Pliocene polycyclic volcano-tectonic structure in the Altiplano Puna volcanic complex of the Central Andes of Bolivia. M.S., Oregon State University, Corvallis

  • Kay SM, Coira B (2009) Shallowing and steepening subduction zones, continental lithosphere loss, magmatism and crustal flow under the central Andean Altiplano–Puna plateau. In: Kay SM, Ramos VA, Dickinson WM (eds.) Backbone of the Americas: shallow subduction, plateau and ridge and terrane collisions. Geol Soc Am Mem, pp 229-260

  • Kay SM, Coira B, Viramonte J (1994) Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, central Andes. J Geophys Res 99:24323–24339

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Magmatism, tectonism, and mineral deposits of the Central Andes (22°-33°S latitude). Geology and ore deposits of the Central Andes. Soc Econ Geol Spec Publ 7:27–59

    Google Scholar 

  • Kay SM, Coira B, Caffe PJ, Chen C-H (2010) Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna Plateau Ignimbrites. J Volcanol Geotherm Res 198:81–111

    Article  Google Scholar 

  • Kelemen PB, Hanghϕj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treat Geochem 3:593–659

    Google Scholar 

  • Kerr AC, Kempton PD, Thompson RN (1995) Crustal assimilation during turbulent magma ascent (ATA); new isotopic evidence from the Mull Tertiary lava succession, NW Scotland. Contrib Mineral Petrol 119:142–154

    Article  Google Scholar 

  • Kilburn CRJ (2000) Lava flows and flow fields. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Acad Press, San Diego, pp 291–305

    Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Strekeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Blackwell Sci Pubs, London, p 193

    Google Scholar 

  • Lindsay JM, Schmitt AK, Trumbull RB, de Silva SL, Siebel W, Emmermann R (2001) Magmatic evolution of the La Pacana caldera system, Central Andes, Chile: compositional variation of two cogenetic, large-volume felsic ignimbrites. J Petrol 42:459–486

    Article  Google Scholar 

  • Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G,Trumbull R, Wilke H, Romer R, Dulski P (2001) Composition and density model of the continental crust at an active continental margin—the Central Andes between 21 and 27 S. Tectonophysics 341:195–223

  • Marinovic N (1979) Geología de los cuadrángulos Zapaleri y Nevados de Poquis, II Región. Memoria de Título (unpublished). Universidad de Chile, Santiago, p 75

    Google Scholar 

  • Maro G (2015) Modelo eruptivo y petrogénesis del volcanismo monogenético neógeno de Puna norte. PhD thesis (unpublished), Universidad Nacional de Salta, Salta, Argentina, 409 pp

  • Maro G, Caffe PJ (2012) Volcanismo máfico terciario de la Puna jujeña, los Cerros Negros de Jama. Ser Correl Geol 28:51–72

    Google Scholar 

  • Marsh BD (1989) Magma chambers. Annu Rev Earth Planet Sci 17:439–474

  • Maurel C, Maurel P (1982) Etude expe¤rimentale de l‘équilibre Fe2+- Fe3+ dans les spinelles chromifères et les liquides silicates basiques, à 1 atm. Comptes Rendus de l‘Académie des Sciences, Série II 295:209–212

  • McGlashan N, Brown LD, Kay SM (2008) Crustal thicknesses in the Central Andes from teleseismically recorded depth phase precursors. Geophys J Int 175:1013–1022

    Article  Google Scholar 

  • Moorbath S, Thompson RN (1980) Strontium isotope geochemistry and petrogenesis of the Early Tertiary lava pile of the Isle of Skye, Scotland, and other basic rocks of the British Tertiary province: an example of magma–crust interaction. J Petrol 21:295–321

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginsburg IV, Ross M., Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133

  • Murray KE, Ducea MN, Schoenbohm L (2015) Foundering-driven lithospheric melting: the source of central Andean mafic lavas on the Puna Plateau (22°S-27°S). Geol Soc Am Mem 212:139–166

    Article  Google Scholar 

  • Nakamura M (1995) Residence time and crystallization history of nickeliferous olivine phenocrysts from the Northern Yatsugatake Volcanoes, Central Japan: application of a growth and diffusion model in the system Mg-Fe-Ni. J Volcanol Geotherm Res 66:81–100

    Article  Google Scholar 

  • Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Mineral 77:1242–1249

    Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part 1: Calibration and testing of a Cr-in-cpx barometer and an enstatite-in-cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • Nixon GT (1988) Petrology of the younger andesites and dacites of Iztaccihuatl volcano, Mexico: I. Disequilibrium phenocryst assemblages as indicators of magma chamber processes. J Petrol 29:213–264

    Article  Google Scholar 

  • Ort M (1993) Eruptive processes and caldera formation in a nested downsag-collapse caldera: Cerro Panizos, central Andes Mountains. J Volcanol Geotherm Res 56:221–252

    Article  Google Scholar 

  • Patiño Douce AE (1993) Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability. Chem Geol 108:133–162

    Article  Google Scholar 

  • Peccerillo R, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Petrelli M, Poli G, Perugini D, Peccerillo A (2005) PetroGraph: a new software to visualize, model, and present geochemical data in igneous petrology. Geochem Geophys Geosyst 6:15

    Article  Google Scholar 

  • Pichavant M, Macdonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol 154:535–558

    Article  Google Scholar 

  • Pouchou JL, Pichoir E (1987) In: Brown JD, Packwood R (eds) 11th International Congress on X-Ray optics and microanalyses, Ontario, pp 249

  • Presta JF, Caffe PJ (2014) Historia eruptiva de los volcanes monogenéticos de El Toro (23°05′S–66°42′O), Puna norte, Argentina. Andean Geol 41:142–173

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Putirka K, Perfit M, Ryerson FJ, Jackson MG (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem Geol 241:177–206

    Article  Google Scholar 

  • Renjith ML (2014) Micro-textures in plagioclase from 1994–1995 eruption, Barren Island Volcano: evidence of dynamic magma plumbing system in the Andaman subduction zone. Geosci Front 5:113–126

    Article  Google Scholar 

  • Reubi O, Blundy J (2008) Assimilation of plutonic roots, formation of high-K exotic melt inclusions and genesis of andesitic magmas at Volcán de Colima, Mexico. J Petrol 49:2221–2243

    Article  Google Scholar 

  • Risse A, Trumbull RB, Coira B, Kay SM, Van den Bogaard P (2008) 40Ar/39Ar geochronology of mafic volcanism in the back-arc region of the southern Puna plateau, Argentina. J S Am Earth Sci 26:1–15

    Article  Google Scholar 

  • Risse A, Trumbull RB, Kay SM, Coira B, Romer RL (2013) Multi-stage evolution of Late Neogene mantle-derived magmas from the Central Andes Back-arc in the Southern Puna Plateau of Argentina. J Petrol 54:1963–1995

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Sack RO, Ghiorso MS (1991) Chromite as a petrogenetic indicator. Rev Mineral Geochem 25:323–354

    Google Scholar 

  • Salisbury MJ, Jicha BR, de Silva SL, Singer BS, Jiménez NC, Ort MH (2011) 40Ar/39Ar chronostratigraphy of Altiplano–Puna volcanic complex ignimbrites reveals the development of a major magmatic province. Geol Soc Am Bull 123:821–840

    Article  Google Scholar 

  • Schmitt AK, de Silva SL, Trumbull R, Emmermann R (2001) Magma evolution in the Purico ignimbrite complex, northern Chile: evidence for zoning of dacitic magma by injection of rhyolitic melts following mafic recharge. Contrib Mineral Petrol 140:680–700

  • Soler MM, Caffe PJ, Coira B, Onoe AT, Mahlburg Kay S (2007) Geology of the Vilama caldera: a new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene. J Volcanol Geotherm Res 164:27–53

    Article  Google Scholar 

  • Streck MJ (2008) Mineral textures and zoning as evidence for open system processes. Rev Mineral Geochem 69:595–622

    Article  Google Scholar 

  • Streck MJ, Leeman WP, Chesley J (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geol 35:351–354

  • Strong M, Wolff J (2003) Compositional variations within scoria cones. Geology 31:143–146

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds.) Magmatism in ocean basins. Geol Soc London 42:313-345

  • Tsuchiyama A (1985) Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites. Contrib Mineral Petrol 89:1–16

    Article  Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177:857–873

    Article  Google Scholar 

  • Valentine GA, Perry FV, Krier D, Keating GN, Kelley RE, Cogbill AH (2006) Small-volume basaltic volcanoes: eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), Southern Nevada. Bull Geol Soc Am 18:1313–1330

    Article  Google Scholar 

  • Van Otterloo J, Raveggi M, Cas RAF, Maas R (2014) Polymagmatic activity at the monogenetic Mt Gambier Volcanic Complex in the Newer Volcanics Province, SE Australia: new insights into the occurrence of intraplate volcanic activity in Australia. J Petrol 55:1317–1351

    Article  Google Scholar 

  • Wallace PJ, Carmichael ISE (1999) Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contrib Mineral Petrol 135:291–314

    Article  Google Scholar 

  • Wan Z, Coogan LA, Canil D (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am Mineral 93:1142–1147

  • Wood BJ, Turner SP (2009) Origin of primitive high-Mg andesite: constraints from natural examples and experiments. Earth Planet Sci Lett 283:59–66

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R (2002) Moho topography in the central Andes and its geodynamic implications. Earth Planet Sci Lett 199:389–402

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Roberto Liquín (CIT-Jujuy), as well as Patrocinio Flores and Paulino Cachizumba (IdGyM-UNJu), for preparation of thin sections and chemical analyses. We also want to thank Marcelo Claros for his cooperation in the field work. Dr. Robert Trumbull graciously allowed us to access the microprobe laboratory of the GFZ Potsdam and contributed with constructive and invaluable discussions. We also thank Oona Appelt (GFZ Potsdam) for her assistance during the execution of microprobe analyses. The comments of Daniel Selles and an anonymous reviewer greatly improved the quality of the original manuscript. This contribution was funded by Secretaría de Ciencia, Técnica y Estudios Regionales-Universidad Nacional de Jujuy (SeCTER-UNJu 08/E034), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2010-2012 N°204), and Agencia Nacional de Promoción Científica y Técnica (PICT 2012-N°1302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guadalupe Maro.

Additional information

Editorial responsibility: P. Wallace

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource Fig. 1

Projection of pyroxene crystals of olivine lavas in the classification diagram (Ca-Fe-Mg) of Morimoto et al. (1988). (DOCX 777 kb)

Online Resource Fig. 2

Ternary diagram Cr# [Cr/(Fe3++Al+Cr)]-Fe# [Fe3+/(Fe3++Al+Cr)]-Al# [Al/(Fe3++Al+Cr)] of Cr-rich spinel inclusions in olivine (DOCX 773 kb)

Online Resource Fig. 3

a Projection of pyroxene crystals of orthopyroxene lavas in the classification diagram (Ca-Fe-Mg) of Morimoto et al. (1988). b Core to rim compositional profile of a representative orthopyroxene phenocryst from the most evolved andesite of the CBAF (sample Bi10-25) (DOCX 915 kb)

Online Resource Table 1

Olivine compositions. (DOCX 21 kb)

Online Resource Table 2

Clinopyroxene compositions. (DOCX 20 kb)

Online Resource Table 3

Orthopyroxene compositions. (DOCX 19 kb)

Online Resource Table 4

Oxide compositions. (DOCX 17 kb)

Online Resource Table 5

Biotite compositions. (DOCX 16 kb)

Online Resource Table 6

Plagioclase compositions. (DOCX 22 kb)

Online Resource Table 7

Summary of thermometers, barometers, and hygrometers used in the estimation of the intensive parameters (DOCX 31 kb)

Online Resource Table 8

Summary of thermobarometric and hygrometric calculations. (DOCX 20 kb)

Online Resource Table 9

Partition coefficients used in fractional crystallization models. (DOCX 19.7 kb)

Online Resource Table 10

Fractional crystallization models. (DOCX 18.2 kb)

Online Resource Table 11

Magma mixing models. (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maro, G., Caffe, P.J. The Cerro Bitiche Andesitic Field: petrological diversity and implications for magmatic evolution of mafic volcanic centers from the northern Puna. Bull Volcanol 78, 51 (2016). https://doi.org/10.1007/s00445-016-1039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1039-y

Keywords

Navigation