Skip to main content

Advertisement

Log in

The hydrothermal alteration of cooling lava domes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Hydrothermal alteration is a recognized cause of volcanic instability and edifice collapse, including that of lava domes or dome complexes. Alteration by percolating fluids transforms primary minerals in dome lavas to weaker secondary products such as clay minerals; moreover, secondary mineral precipitation can affect the porosity and permeability of dome lithologies. The location and intensity of alteration in a dome depend heavily on fluid pathways and availability in conjunction with heat supply. Here we investigate postemplacement lava dome weakening by hydrothermal alteration using a finite element numerical model of water migration in simplified dome geometries. This is combined with the rock alteration index (RAI) to predict zones of alteration and secondary mineral precipitation. Our results show that alteration potential is highest at the interface between the hot core of a lava dome and its clastic talus carapace. The longest lived alteration potential fields occur in domes with persistent heat sources and permeabilities that allow sufficient infiltration of water for alteration processes, but not so much that domes cool quickly. This leads us to conclude that alteration-induced collapses are most likely to be shallow seated and originate in the talus or talus/core interface in domes which have a sustained supply of magmatic heat. Mineral precipitation at these zones of permeability contrast could create barriers to fluid flow, potentially causing gas pressurization which might promote deeper seated and larger volume collapses. This study contributes to our knowledge of how hydrothermal alteration can affect lava domes and provides constraints on potential sites for alteration-related collapses, which can be used to target hazard monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aizawa K, Ogawa Y, Ishido T (2009) Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics. J Geophys Res 114:1–12. doi:10.1029/2008JB005910

    Google Scholar 

  • Alt-Epping P, Smith L (2001) Computing geochemical mass transfer and water/rock ratios in submarine hydrothermal systems: implications for estimating the vigour of convection. Geofluids 1:163–181. doi:10.1046/j.1468-8123.2001.00014.x

    Article  Google Scholar 

  • Anderson S, Arthur M, Asimow P et al (1999) Encyclopedia of volcanoes. 1442

  • Ball JL, Calder ES, Hubbard BE, Bernstein ML (2013) An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards. Bull Volcanol 75:676. doi:10.1007/s00445-012-0676-z

    Article  Google Scholar 

  • Barclay J, Johnstone JE, Matthews AJ (2006) Meteorological monitoring of an active volcano: implications for eruption prediction. J Volcanol Geotherm Res 150:339–358. doi:10.1016/j.jvolgeores.2005.07.020

    Article  Google Scholar 

  • Barmin A, Melnik O, Sparks RSJ (2002) Periodic behavior in lava dome eruptions. Earth Planet Sci Lett 199:173–184

    Article  Google Scholar 

  • Bartetzko A, Klitzsch N, Iturrino G et al (2006) Electrical properties of hydrothermally altered dacite from the PACMANUS hydrothermal field (ODP Leg 193). J Volcanol Geotherm Res 152:109–120. doi:10.1016/j.jvolgeores.2005.10.002

    Article  Google Scholar 

  • Bedrosian PA, Unsworth MJ, Johnston MJS (2007) Hydrothermal circulation at Mount St. Helens determined by self-potential measurements. J Volcanol Geotherm Res 160:137–146. doi:10.1016/j.jvolgeores.2006.09.003

    Article  Google Scholar 

  • Bernard ML, Zamora M, Géraud Y, Boudon G (2007) Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles). J Geophys Res Solid Earth 112:1–16. doi:10.1029/2006JB004385

    Article  Google Scholar 

  • Boudon G, Villemant B, Komorowski J et al (1998) The hydrothermal system at Soufriere Hills Volcano, Montserrat (West Indies): characterization and role in the on-going eruption. Geophys Res Lett 25:3693. doi:10.1029/98GL00985

    Article  Google Scholar 

  • Brace WF (1984) Permeability of crystalline rocks: new in situ measurements. J Geophys Res 89:4327. doi:10.1029/JB089iB06p04327

    Article  Google Scholar 

  • Brothelande E, Finizola A, Peltier A et al (2014) Fluid circulation pattern inside La Soufrière volcano (Guadeloupe) inferred from combined electrical resistivity tomography, self-potential, soil temperature and diffuse degassing measurements. J Volcanol Geotherm Res 288:105–122. doi:10.1016/j.jvolgeores.2014.10.007

    Article  Google Scholar 

  • Calder ES, Luckett R, Sparks RSJ, Voight B (2002) Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21:173–190. doi:10.1144/GSL.MEM.2002.021.01.08

    Article  Google Scholar 

  • Calder ES, Cortés JA, Palma JL, Luckett R (2005) Probabilistic analysis of rockfall frequencies during an andesite lava dome eruption: the Soufrière Hills Volcano, Montserrat. Geophys Res Lett 32:1–4. doi:10.1029/2005GL023594

    Article  Google Scholar 

  • Carrasco-Núñez G, Díaz-Castellón R, Siebert L et al (2006) Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: the role of sloping substrate and implications for hazard assessment. J Volcanol Geotherm Res 158:151–176. doi:10.1016/j.jvolgeores.2006.04.025

    Article  Google Scholar 

  • Chaudhuri A, Rajaram H, Viswanathan H et al (2009) Buoyant convection resulting from dissolution and permeability growth in vertical limestone fractures. Geophys Res Lett 36:587–596. doi:10.1029/2008GL036533

    Article  Google Scholar 

  • Costa A, Melnik O, Sparks RSJ (2007) Controls of conduit geometry and wallrock elasticity on lava dome eruptions. Earth Planet Sci Lett 260:137–151. doi:10.1016/j.epsl.2007.05.024

    Article  Google Scholar 

  • Cox ME, Browne P (1998) Hydrothermal alteration mineralogy as an indicator of hydrology at the Ngawha geothermal field, New Zealand. Geothermics 27:259–270. doi:10.1016/S0375-6505(97)10015-3

    Article  Google Scholar 

  • Crandell DR (1971) Postglacial lahars from Mount Rainier Volcano, Washington. US Geol Surv Prof Pap 677:75

    Google Scholar 

  • Dash ZV (2003) Validation Test Plan (VTP) Results for the FEHM application version 2.21. 76. http://fehm.lanl.gov/pdfs/fehm_vvr.pdf

  • Dash ZV, Fitzgerald MF, Pollock F (2003) Validation Test Plan (VTP) for the FEHM application version 2.21. 20. http://fehm.lanl.gov/pdfs/fehm_vvp.pdf

  • Del Potro R, Hürlimann M (2009) The decrease in the shear strength of volcanic materials with argillic hydrothermal alteration, insights from the summit region of Teide stratovolcano, Tenerife. Eng Geol 104:135–143. doi:10.1016/j.enggeo.2008.09.005

    Article  Google Scholar 

  • Devoli G, Cepeda J, Kerle N (2009) The 1998 Casita volcano flank failure revisited—new insights into geological setting and failure mechanisms. Eng Geol 105:65–83. doi:10.1016/j.enggeo.2008.12.006

    Article  Google Scholar 

  • Duffield BWA, Richter DH, Priest SS (1995) Physical volcanology of silicic lava domes as exemplified by the Taylor Creek Rhyolite, Catron and Sierra Counties, New Mexico. US Geol Surv Map I-2399, 1:50,000

  • Dufresne A (2009) Influence of runout path material on rock and debris avalanche mobility: field evidence and analogue modelling. PhD thesis, University of Freiburg, 268

  • Elsworth D, Voight B, Thompson G, Young SR (2004) Thermal-hydrologic mechanism for rainfall-triggered collapse of lava domes. Geology 32:969. doi:10.1130/G20730.1

    Article  Google Scholar 

  • Fields R, Soni BK, Thompson JF, et al. (1996) Geological applications of automatic grid generation tools for finite elements applied to porous flow modeling. Numerical Grid Generation in Computational Fluid Dynamics: Methods 1–9

  • Fink JH, Griffiths RW (1998) Morphology, eruption rates, and rheology of lava domes: insights from laboratory models. J Geophys Res 103:527. doi:10.1029/97JB02838

    Article  Google Scholar 

  • Fink JH, Pollard DD (1983) Structural evidence for dikes beneath silicic domes, Medicine Lake Highland Volcano. Calif Geol. doi:10.1130/0091-7613(1983)11<458

    Google Scholar 

  • Finn CA, Deszcz-Pan M (2011) Helicopter magnetic and electromagnetic surveys at Mounts Adams, Baker and Rainier, Washington: implications for debris flow hazards and volcano hydrology. Soc Explor Geophys Glob Meet Abstr 15:3 pp. doi: 10.1190/1.3659065

  • Finn CA, Deszcz-Pan M, Anderson ED, John DA (2007) Three-dimensional geophysical mapping of rock alteration and water content at Mount Adams, Washington: implications for lahar hazards. J Geophys Res 112:1–21. doi:10.1029/2006JB004783

    Google Scholar 

  • Flint LE, Buesch DC, Flint AL (2006) Characterization of unsaturated zone hydrogeologic units using matrix properties and depositional history in a complex volcanic environment. Vadose Zone J 5:480. doi:10.2136/vzj2004.0180

    Article  Google Scholar 

  • García A, Contreras E, Viggiano JC (1989) Establishment of an empirical correlation for estimating the thermal conductivity of igneous rocks. Int J Thermophys. doi:10.1007/BF00503174

    Google Scholar 

  • Giggenbach W (1992) SEG distinguished lecture: magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Econ Geol

  • Goff F, Janik CJ (2000) Geothermal systems. In: Sigurdsson H, Houghton B, McNutt SR et al (eds) Encycl. Volcanoes. Academic Press, San Diego, pp 817–834

    Google Scholar 

  • Hale AJ (2008) Lava dome growth and evolution with an independently deformable talus. Geophys J Int 174:391–417. doi:10.1111/j.1365-246X.2008.03806.x

    Article  Google Scholar 

  • Hale AJ, Calder ES, Loughlin SC et al (2009a) Modelling the lava dome extruded at Soufriere Hills Volcano, Montserrat, August 2005-May 2006; part I: dome shape and internal structure. J Volcanol Geotherm Res 187:69–84. doi:10.1016/j.jvolgeores.2009.08.014

    Article  Google Scholar 

  • Hale AJ, Calder ES, Wadge G et al (2009b) Modelling the lava dome extruded at Soufriere Hills Volcano, Montserrat, August 2005-May 2006; part II: rockfall activity and talus deformation. J Volcanol Geotherm Res 187:53–68. doi:10.1016/j.jvolgeores.2009.08.023

    Article  Google Scholar 

  • Harford CL, Pringle MS, Sparks RSJ, Young SR (2002) The volcanic evolution of Montserrat using 40Ar/39Ar geochronology. Geol Soc Lond Mem 21:93–113. doi:10.1144/GSL.MEM.2002.021.01.05

    Article  Google Scholar 

  • Hemmings B, Whitaker F, Gottsmann J, Hughes A (2015) Hydrogeology of Montserrat review and new insights. J Hydrol Reg Stud 3:1–30. doi:10.1016/j.ejrh.2014.08.008

    Article  Google Scholar 

  • Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: a geochemical review. Earth Sci Rev. doi:10.1016/0012-8252(83)90075-2

    Google Scholar 

  • Hicks PD, Matthews AJ, Cooker MJ (2009) Thermal structure of a gas-permeable lava dome and timescale separation in its response to perturbation. J Geophys Res 114, B07201. doi:10.1029/2008JB006198

    Google Scholar 

  • Horwell CJ, Williamson BJ, Llewellin EW et al (2013) The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes. Bull Volcanol 75:1–19. doi:10.1007/s00445-013-0696-3

    Article  Google Scholar 

  • Hurwitz S, Kipp K, Ingebritsen SE, Reid ME (2003) Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade Range. J Geophys Res 108:1–19. doi:10.1029/2003JB002565

    Google Scholar 

  • Hutnak M, Fisher AT, Zühlsdorf L et al (2006) Hydrothermal recharge and discharge guided by basement outcrops on 0.7–3.6 Ma seafloor east of the Juan de Fuca Ridge: observations and numerical models. Geochem Geophys Geosyst. doi:10.1029/2006GC001242

    Google Scholar 

  • Ikeda R, Kajiwara T, Omura K, Hickman S (2008) Physical rock properties in and around a conduit zone by welllogging in the Unzen scientific drilling project, Japan. J Volcanol Geotherm Res 175:13–19. doi:10.1016/j.jvolgeores.2008.03.036

    Article  Google Scholar 

  • Ingebritsen SE, Hayba DO (1994) Fluid flow and heat transport near the critical point of H2. Geophys Res Lett 21:2199–2202. doi:10.1002/9780470114735.hawley04378

    Article  Google Scholar 

  • Ingebritsen SE, Geiger S, Hurwitz S, Driesner T (2010) Numerical simulation of magmatic hydrothermal systems. Rev Geophys 48:1–33. doi:10.1029/2009RG000287

    Article  Google Scholar 

  • John DA, Sisson TW, Breit GN et al (2008) Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: implications for debris-flow hazards and mineral deposits. J Volcanol Geotherm Res 175:289–314

    Article  Google Scholar 

  • Join JL, Folio JL, Robineau B (2005) Aquifers and groundwater within active shield volcanoes. Evolution of conceptual models in the Piton de la Fournaise volcano. J Volcanol Geotherm Res 147:187–201. doi:10.1016/j.jvolgeores.2005.03.013

    Article  Google Scholar 

  • Keating GN (2005) The role of water in cooling ignimbrites. J Volcanol Geotherm Res 142:145–171. doi:10.1016/j.jvolgeores.2004.10.019

    Article  Google Scholar 

  • Kerle N (2002) Volume estimation of the 1998 flank collapse at Casita volcano, Nicaragua: a comparison of photogrammetric and conventional techniques. Earth Surf Process Landf 27:759–772. doi:10.1002/esp.351

    Article  Google Scholar 

  • Khaleel R (1989) Scale dependence of continuum models for fractured basalts. Water Resour Res 25:1847. doi:10.1029/WR025i008p01847

    Article  Google Scholar 

  • Lavigne F, Thouret J, Voight B et al (2000) Lahars at Merapi volcano, Central Java: an overview. J Volcanol Geotherm Res 100:423–456. doi:10.1016/S0377-0273(00)00150-5

    Article  Google Scholar 

  • Le Friant A, Boudon G, Komorowski JC et al (2006) Potential flank-collapse of Soufriere volcano, Guadeloupe, Lesser Antilles: numerical simulation and hazards. Nat Hazards 39:381–393. doi:10.1007/s11069-005-6128-8

    Article  Google Scholar 

  • Lesparre N, Gibert D, Marteau J et al (2012) Density muon radiography of La Soufriere of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data. Geophys J Int 190:1008–1019. doi:10.1111/j.1365-246X.2012.05546.x

    Article  Google Scholar 

  • Lopez F (2004) Monimiento de sedimentos en el cauce del Rio Samala: Informe Final. Coord Nac Para La Reducc Desastr 37

  • McGuire W (2003) Volcano instability and lateral collapse. I:33–45

  • Miller TA, Vessilinov VV, Stauffer PH, et al (2007) Integration of geologic frameworks in meshing and setup of computational hydrogeologic models, Pajarito Plateau, New Mexico. New Mex. Geol. Soc. Guid. Book, 58th F. Conf. Geol. Jemez Mt. Reg. III

  • Mueller S, Scheu B, Spieler O, Dingwell DB (2008) Permeability control on magma fragmentation. Geology. doi:10.1130/G24605A.1

    Google Scholar 

  • Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen Volcano. J Volcanol Geotherm Res 89:1–22. doi:10.1016/S0377-0273(98)00118-8

    Article  Google Scholar 

  • Nicollin F, Gibert D, Beauducel F et al (2006) Electrical tomography of La Soufrière of Guadeloupe volcano: field experiments, 1D inversion and qualitative interpretation. Earth Planet Sci Lett 244:709–724. doi:10.1016/j.epsl.2006.02.020

    Article  Google Scholar 

  • Ogawa Y, Daimaru H, Shimizu A (2007) Experimental study of post-eruption overland flow and sediment load from slopes overlain by pyroclastic-flow deposits, Unzen volcano, Japan. Géomorphologie Reli Process Environ 237–246. doi:10.4000/geomorphologie.3962

  • Opfergelt S, Delmelle P, Boivin P, Delvaux B (2006) The 1998 debris avalanche at Casita volcano, Nicaragua: investigation of the role of hydrothermal smectite in promoting slope instability. Geophys Res Lett 33:4. doi:10.1029/2006gl026661, L15305

    Article  Google Scholar 

  • Platz T, Cronin SJ, Procter JN et al (2012) Non-explosive, dome-forming eruptions at Mt. Taranaki, New Zealand. Geomorphology 136:15–30. doi:10.1016/j.geomorph.2011.06.016

    Article  Google Scholar 

  • Rad SD, Allègre CJ, Louvat P (2007) Hidden erosion on volcanic islands. Earth Planet Sci Lett 262:109–124. doi:10.1016/j.epsl.2007.07.019

    Article  Google Scholar 

  • Raffensperger JP, Vlassopoulos D (1999) The potential for free and mixed convection in sedimentary basins. Hydrogeol J 7:505–520. doi:10.1007/s100400050224

    Article  Google Scholar 

  • Reid ME, Sisson TW, Brien DL (2002) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29:779–782. doi:10.1130/0091-7613(2001)029<0779:VCPBHA>2.0.CO;2

    Article  Google Scholar 

  • Reyes AG (1990) Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. J Volcanol Geotherm Res. doi:10.1016/0377-0273(90)90057-M

    Google Scholar 

  • Riggs N, Carrasco-Nunez G (2004) Evolution of a complex isolated dome system, Cerro Pizarro, central México. Bull Volcanol 66:322–335. doi:10.1007/s00445-003-0313-y

    Article  Google Scholar 

  • Salaün A, Villemant B, Gérard M et al (2011) Hydrothermal alteration in andesitic volcanoes: trace element redistribution in active and ancient hydrothermal systems of Guadeloupe (Lesser Antilles). J Geochem Explor 111:59–83. doi:10.1016/j.gexplo.2011.06.004

    Article  Google Scholar 

  • Sammel EA, Ingebritsen SE, Mariner RH (1988) The hydrothermal system at Newberry volcano, Oregon. J Geophys Res 93:10,149–10,162

    Article  Google Scholar 

  • Scheu B, Spieler O, Dingwell DB (2006) Dynamics of explosive volcanism at Unzen volcano: an experimental contribution. Bull Volcanol 69:175–187. doi:10.1007/s00445-006-0066-5

    Article  Google Scholar 

  • Scott KM, Vallance JW (1995) Debris flow, debris avalanche, and flood hazards at and downstream from Mount Rainier, Washington. Hydrol Investig Atlas 9 (2 sheets)

  • Scott KM, Vallance JW, Kerle N et al (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf Process Landforms 30:59–79. doi:10.1002/esp.1127

    Article  Google Scholar 

  • Sekioka M (1988) Tentative estimate of bulk permeability of basement rocks from heat discharges in a geothermal field. J Volcanol Geotherm Res. doi:10.1016/0377-0273(88)90006-6

    Google Scholar 

  • Sheridan MF, Bonnard C, Careeno R, et al (1999) Report on the 30 October 1998 rock fall / avalanche and breakout flow of Casita Volcano, Nicaragua, triggered by Hurricane Mitch. Landslide News 1202–1204

  • Siebert L (2002) Landslides resulting from structural failure of volcanoes. Catastrophic landslides Eff Occur Mech 15:209–235. doi:10.1130/REG15-p209

    Article  Google Scholar 

  • Smith JV, Miyake Y, Oikawa T (2001) Interpretation of porosity in dacite lava domes as ductile-brittle failure textures. J Volcanol Geotherm Res 112:25–35. doi:10.1016/S0377-0273(01)00232-3

    Article  Google Scholar 

  • Smithsonian Institution (1991) Unzen Bull Glob Volcanism Netw 16

  • Sparks RSJ, Barclay J, Calder ES et al (2002) Generation of a debris avalanche and violent pyroclastic density current on 26 December (Boxing day) 1997 at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21:409–434. doi:10.1144/GSL.MEM.2002.021.01.18

    Article  Google Scholar 

  • Tanaka HKM, Nakano T, Takahashi S et al (2007) Imaging the conduit size of the dome with cosmic-ray muons: the structure beneath Showa-Shinzan Lava Dome, Japan. Geophys Res Lett 34, L22311. doi:10.1029/2007GL031389

    Article  Google Scholar 

  • Velázquez E, Gómez-Sal A (2007) Environmental control of early succession on a large landslide in a tropical dry ecosystem (Casita volcano, Nicaragua). Biotropica 39:601–609. doi:10.1111/j.1744-7429.2007.00306.x

    Article  Google Scholar 

  • Voight B, Elsworth D (1997) Failure of volcano slopes. Geotechnique. doi:10.1680/geot.1997.47.1.1

    Google Scholar 

  • Voight B, Elsworth D (2000) Instability and collapse of hazardous gas-pressurized lava domes. Geophys Res Lett 27:1–4

    Article  Google Scholar 

  • Voight B, Komorowski J, Norton GE et al (2002) The 26 December (Boxing day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21:363–407. doi:10.1144/GSL.MEM.2002.021.01.17

    Article  Google Scholar 

  • Wadge G, Ryan G, Calder ES (2009) Clastic and core lava components of a silicic lava dome. Geology 37:551–554. doi:10.1130/G25747A.1

    Article  Google Scholar 

  • Walker JA, Templeton S, Cameron BI (2006) The chemistry of spring waters and fumarolic gases encircling Santa Maria Volcano, Guatemala. Geol Soc Am Spec Pap 412:59. doi:10.1130/2006.2412(04)

    Google Scholar 

  • Walter TR, Ratdomopurbo A, Aisyah N et al (2013) Dome growth and coulée spreading controlled by surface morphology, as determined by pixel offsets in photographs of the 2006 Merapi eruption. J Volcanol Geotherm Res 261:121–129. doi:10.1016/j.jvolgeores.2013.02.004

    Article  Google Scholar 

  • Watanabe T, Shimizu Y, Noguchi S, Nakada S (2008) Permeability measurements on rock samples from Unzen scientific drilling project drill hole 4 (USDP-4). J Volcanol Geotherm Res 175:82–90. doi:10.1016/j.jvolgeores.2008.03.021

    Article  Google Scholar 

  • Watts RB, Herd RA, Sparks RSJ, Young SR (2002) Growth patterns and emplacement of the andesitic lava dome at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21:115–152. doi:10.1144/GSL.MEM.2002.021.01.06

    Article  Google Scholar 

  • Wetzel LR, Raffensperger JP, Shock EL (2001) Predictions of hydrothermal alteration within near-ridge oceanic crust from coordinated geochemical and fluid flow models. J Volcanol Geotherm Res 110:319–342. doi:10.1016/S0377-0273(01)00215-3

    Article  Google Scholar 

  • Wicks C, de la Llera JC, Lara LE, Lowenstern J (2011) The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile. Nature 478:374–377. doi:10.1038/nature10541

    Article  Google Scholar 

  • Zyvoloski G (2007) FEHM: a control volume finite element code for simulating subsurface multi-phase multi-fluid heat and mass transfer. Los Alamos Unclassif. Rep. LA-UR-07-3359

  • Zyvoloski GA, Robinson BA, Dash ZV, Trease LL (1999) Models and methods summary for the FEHM application. Los Alamos Natl Laboratory Publ SC-194

Download references

Acknowledgments

This manuscript benefited greatly from the comments by J. White and two anonymous reviewers. This work was supported by a National Science Foundation Graduate Research Fellowship 1010210, National Science Foundation Award 1228217, and a scholarship from the University at Buffalo Center For Geohazards Studies. Numerical modeling was performed with the Los Alamos National Laboratory’s Subsurface Flow and Transport Team and the University at Buffalo’s Center for Computational Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica L. Ball.

Additional information

Editorial responsibility: J.D.L. White

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ball, J.L., Stauffer, P.H., Calder, E.S. et al. The hydrothermal alteration of cooling lava domes. Bull Volcanol 77, 102 (2015). https://doi.org/10.1007/s00445-015-0986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0986-z

Keywords

Navigation