Skip to main content
Log in

A historical pyroclastic flow emplaced within a pre-existing Pleistocene lava tube: Silidong, Tianchi Volcano, Changbaishan, northeastern China

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Pyroclastic flow deposits recently found within a pre-existing lava tube at Tianchi Volcano represent, to the best of our knowledge, the only such reported occurrence worldwide. In this case, pyroclastic flow of Tianchi’s “Millennium eruption” (~1 ka) traveled about 18 km from the summit eruptive source and poured successively into the ~560-m-long accessible segment of Silidong lava tube. Mapping of tube morphology, combined with detailed characterization of the features associated with the pumice flow deposits (e.g., adhering of pyroclastic materials on tube walls, fumarole pipes, rootless vents, and flow fronts of the deposit surface) has enabled plausible inferences regarding the original within-tube conditions and dynamic flow regime during emplacement. We propose a model of an aggrading pyroclastic flow which locally varies its sedimentation rate. The pyroclastic deposit is thicker in locations of reduced flow mobility, and the resultant variations in deposit thickness appear to control the distribution of fumarole pipes and rootless vents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews BJ, Manga M (2011) Effects of topography on pyroclastic density current runout and formation of coignimbrites. Geology. doi:10.1130/G32226.1

    Google Scholar 

  • Bohrson WA, Clague DA (1988) Origin of ultramafic xenoliths containing exsolved pyroxenes from Hualalai Volcano, Hawaii. Contrib Mineral Petrol 100:139–155

    Article  Google Scholar 

  • Branney MJ, Kokelaar BP (1992) A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull Volcanol. doi:10.1007/s00445-012-0582-4

    Google Scholar 

  • Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Lond Mem 27:1–152

    Article  Google Scholar 

  • Bursik M, Woods AW (2000) The effects of topography on sedimentation from particle-laden turbulent density currents. J Sediment Res 70(1):53–63

    Article  Google Scholar 

  • Calvari S, Pinkerton H (1998) Formation of lava tubes and extensive flow field during the 1991–1993 eruption of Mount Etna. J Geophys Res. doi:10.1029/97JB03388

    Google Scholar 

  • Calvari S, Pinkerton H (1999) Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J Volcanol Geotherm Res 90(3–4):263–280

    Article  Google Scholar 

  • Caporuscio FA, Gardner JN, Schultz-Fellenz ES, Kelley RE (2012) Fumarolic pipes in the Tshirege Member of the Bandelier Tuff on the Pajarito Plateau, Jemez Mountains, New Mexico. Bull Volcanol. doi:10.1007/s00445-012-0582-4

    Google Scholar 

  • Caricchi C, Vona A, Corrado S, Giordano G, Romano C (2014) 79 AD Vesuvius PDC deposits’ temperatures inferred from optical analysis on woods charred in-situ in the Villa dei Papiri at Herculaneum (Italy). J Volcanol Geotherm Res 289:14–25

    Article  Google Scholar 

  • Cashman KV, Sparks RSJ (2013) How volcano work: a 25 year perspective. Geol Soc Am Bull. doi:10.1130/B30720.1

    Google Scholar 

  • Cobeñas G, Thouret JC, Bonadonna C, Boivin P (2012) The c.2030 yr BP Plinian eruption of El Misti volcano, Peru: eruption dynamics and hazard implications. J Volcanol Geotherm Res 241–242:105–120

    Article  Google Scholar 

  • Cobeñas G, Thouret JC, Bonadonna C, Boivin P (2014) Reply to comment on: “Cobeñas, G., Thouret, J.-C., Bonadonna, C.,Boivin, P., 2012. The c.2030 yr BP Plinian eruption of El Misti volcano, Peru: Eruption dynamics and hazard implications. Journal of Volcanology and Geothermal Research 241–242, 105–120.” by Harpel et al., JVGR 2013. J Volcanol Geotherm Res 275:103–113

  • Doronzo DM (2012) Two new end members of pyroclastic density currents: forced convection-dominated and inertia-dominated. J Volcanol Geotherm Res 219–220:87–91

    Article  Google Scholar 

  • Doronzo DM, Dellino P (2013) Hydraulics of subaqueous ash flows as deduced from their deposits: 2. Water entrainment, sedimentation, and deposition, with implications on pyroclastic density current deposit emplacement. J Volcanol Geotherm Res 258:176–186

    Article  Google Scholar 

  • Doronzo DM, Dellino P (2014) Pyroclastic density currents and local topography as seen with the conveyer model. J Volcanol Geotherm Res 278–279:25–39

    Article  Google Scholar 

  • Druitt TH, Kokelaar BP (eds) (2002) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. London, Memoirs, Geological Society, 21, p 272

  • Fan QC (2008) History and evolution of Changbaishan volcano. Resour Surv Environ 29(3):196–203 (in Chinese)

    Google Scholar 

  • Fan QC, Sui JL, Wang TH, Li N, Sun Q (2006) Eruption history and magma evolution of the trachybasalt in the Tianchi volcano, Changbaishan. Acta Petrol Sin 22(6):1449–1457

    Google Scholar 

  • Fisher RV, Schmincke H–U (1984) Pyroclastic rocks. Springer, Berlin, pp 298–309

    Book  Google Scholar 

  • Giordano G (1998) The effect of paleo-topography on lithic distribution and facies associations of small volume ignimbrites: an insight into transport and depositional systems of WTT Cupa (Roccamonfina volcano, Italy). J Volcanol Geotherm Res 87:255–273

    Article  Google Scholar 

  • Giordano G, De Rita D, Cas RAF, Rodani S (2002) Valley pond and ignimbrite veneer deposits in small volume phreatomagmatic basic ignimbrite, Lago Albano Maar, Colli Albani volcano, Italy: influence of topography. J Volcanol Geotherm Res 118:131–144

    Article  Google Scholar 

  • Greeley R (1987) The role of lava tubes in Hawaiian volcanoes. In: Decker RW et al. (ed) Volcanism in Hawaii. US Geol Surv Prof Pap 1350(59):1589–1602

  • Harpel CJ, Silva S, Salas G (2013) Comment on: “Cobeñas, G., Thouret, J.-C., Bonadonna, C., Boivin, P., 2012. The c.2030 yr BP Plinian eruption of El Misti volcano, Peru: eruption dynamics and hazard implications. Journal of Volcanology and Geothermal Research 241–242, 105–120.” J Volcano Geotherm Res 265: 94–101

  • Hildreth W, Fierstein J (2012) The Novarupta-Katmai eruption of 1912—largest eruption of the twentieth century: centennial perspectives. US Geol Surv Prof Pap 1791:122–123

    Google Scholar 

  • Horn S, Schmincke H-U (2000) Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD. Bull Volcanol. doi:10.1007/s004450050004

    Google Scholar 

  • Liu RX, Qiu SH, Cai LZ, Wei HQ (1998) The data of last large eruption of Changbaishan-Tianchi volcano and its significance. Sci China Earth Sci 41(1):69–74

    Article  Google Scholar 

  • Lockwood JP, Hazlett RW (2010) Volcanoes: global perspectives. Wiley-Blackwell, Chichester, pp 347–350

    Google Scholar 

  • Machida H, Arai F (1983) Extensive ash falls in and around the Sea of Japan from large late Quaternary eruptions. J Volcanol Geotherm Res 18:151–164

    Article  Google Scholar 

  • Pedrazzi D, Marti J, Geyer A (2013) Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golgo (Lanzarote, Canary Islands). Bull Volcanol. doi:10.1007/s00445-013-0740-3

    Google Scholar 

  • Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) Development of lava tubes in light of observations at Mauna Ulu, Kilauea Volcano, Hawaii. Bull Volcanol. doi:10.1007/BF00326461

    Google Scholar 

  • Schwarzkopf LM, Schmincke H-U, Cronin SJ (2005) A conceptual model for block-and-ash flow basal avalanche transport and deposition, based on deposit architecture of 1998 and 1994 Merapi flow. J Volcanol Geotherm Res 139:117–134

    Article  Google Scholar 

  • Scott KM, Pringle PT, Vallance JW (1992) Sedimentology, behavior, and hazards of debris flows at Mount Rainier, Washington. U.S. Geological Survey Open-File Report 90–385, pp 106

  • Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world, 3rd edn. University of California Press, Berkeley

    Google Scholar 

  • Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15

    Article  Google Scholar 

  • Stone R (2011) Is China’s riskiest volcano stirring or merely biding its time? Science. doi:10.1126/science.329.5991.498-a

    Google Scholar 

  • Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65

    Article  Google Scholar 

  • Valentine GA, White JDL, Ross P-S, Amin J, Taddeucci J, Sonder I, Johnson PJ (2012) Experimental craters formed by single and multiple buried explosions and implications for volcanic craters with emphasis on maars. Geophys Res Lett. doi:10.1029/2012GL053716

    Google Scholar 

  • Vallance JW (2000) Lahars. In: Houghton BF, Sigurdsson H (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 610–614

    Google Scholar 

  • Vallance JW (2005) Volcanic debris flows. In: Jakob M, Jungr O (ed) Debris-flows Hazards and Related Phenomena. Springer, pp 247–272

  • Walker GPL (1983) Ignimbrite types and ignimbrite problems. J Volcanol Geotherm Res 17:65–88

    Article  Google Scholar 

  • Wei HQ (2010) Magma up moving process within the magma prism beneath the Changbaishan volcanoes. Earth Sci Front 17(1):011–023 (in Chinese with English abstract)

    Google Scholar 

  • Wei HQ (2014) Tianchi volcano, Changbaishan. Seimological Press, Beijing, pp 132–137 (in Chinese)

    Google Scholar 

  • Wei HQ, Liu RX, Li XD (1997) Ignimbrite eruptions from Tianchi volcano and their climate effect. Earth Sci Front 4:263–266 (in Chinese with English abstract)

    Google Scholar 

  • Wei HQ, Liu RX, Yang QF (1998) Physical volcanology study of Tianchi Volcano. In: Liu RX, Wei HQ, Li JT (eds) Recent eruptions of Tianchi volcano. Changbaishan. Science Press, Beijing, pp 83–107 (in Chinese)

    Google Scholar 

  • Wei HQ, Hong HJ, Sparks RSJ, Walder JS, Han B (2004) Potential hazards of eruptions around the Tianchi Caldera Lake, China. Acta Geol Sin 78(3):790–794

    Google Scholar 

  • Wei HQ, Melnik O, Liu YS, Barmin A, Sparks RSJ (2006) Conduit modeling of magma flow dynamics: a case study on the eruptive process at the Tianchi volcano. Acta Petrol Sin 22(12):3007–3013 (in Chinese with English abstract)

    Google Scholar 

  • Wei HQ, Liu GM, Gill J (2013) Review of eruptive activity at Tianchi Volcano, Changbaishan, northeast China: implications for possible future eruptions. Bull Volcanol 75:706

    Article  Google Scholar 

  • Williams R, Branney MJ, Barry TL (2014) Temporal and spatial evolution of a waxing then waning catastrophic density current revealed by chemical mapping. Geology 42:107–110

    Article  Google Scholar 

  • Wilson L, Sparks RSJ, Huang TC, Watkins ND (1978) The control of volcanic column heights by eruption energetics and dynamics. J Geophys Res Solid Earth 83(B4):1829–1836

    Article  Google Scholar 

  • Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions—IV, the control of magma properties and conduit geometry on eruption column behavior. Geophys J R Astron Soc 63:117–148

    Article  Google Scholar 

  • Wright HMN, Lesti C, Cas RAF, Porreca M, Viramonte JG, Folkes CB, Giordano G (2011) Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina. Bull Volcanol. doi:10.1007/s00445-011-0524-6

    Google Scholar 

  • Wu JP, Ming YH, Su W (2004) Study on the deep velocity structures and seismicity in Changbaishan Tianchi Volcano region. In: (ed) Deep Earth Texture and Dynamics studies beneath China Continent. Science Press, Beijing, pp 859–871 (in Chinese)

  • Xu JD, Pan B, Liu TZ, Hajdas I, Zhao B, Yu HM (2013) Climatic impact of the Millennium eruption of Changbaishan volcano in China: new insights from high-precision radiocarbon wiggle-match dating. Geophys Res Lett. doi:10.1029/2012GL054246

    Google Scholar 

  • Zhao DP, Lei JS, Tang RS (2004) Origin of Changbaishan Volcano, NE China: tomography evidence of seismology. Chin Sci Bull 49(14):1439–1446 (in Chinese)

    Article  Google Scholar 

  • Zhao B, Xu JD, Yu HM (2010) Grain-size characteristics of pyroclasts in Changbaishan Mountain area. Seismol Geol 32(2):233–243 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Natural Science Foundation of China (41172304, 40172033, 40472039) and the state volcano program from the Earthquake Administration of China (8-27-7). Colleagues in the Earthquake Administration of Jilin Province greatly helped with the fieldwork. Special thanks for discussion go to Mr. Jan Paul van der Pas, who provided very helpful discussions and comments for preparing an early version of the manuscript. Finally, we greatly appreciate the efforts of editor G. Giordano and two anonymous reviewers (or more) for their incisive but constructive comments and suggestions to improve this manuscript. CZQ wish to thank Dr. Zhao Bo for the discussion, and Mr. Li Wei and Liu Guodong for the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Wei.

Additional information

Editorial responsibility: G. Giordano

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wei, H., Liu, Y. et al. A historical pyroclastic flow emplaced within a pre-existing Pleistocene lava tube: Silidong, Tianchi Volcano, Changbaishan, northeastern China. Bull Volcanol 77, 48 (2015). https://doi.org/10.1007/s00445-015-0933-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0933-z

Keywords

Navigation