Skip to main content
Log in

A melt viscosity scale for preeruptive magmas

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

A simplified method to estimate preeruptive melt viscosity by using only melt SiO2 content (groundmass SiO2 content) is proposed for sub-alkaline magmas. Melt viscosity is controlled by many magmatic properties (e.g., melt composition, melt water content, and temperature); however, these properties are linked by phase equilibrium in preeruptive magmas. In this study, the magmatic properties were investigated by compiling data of phase equilibria experiments performed under preeruptive conditions. Negative correlations are found between melt SiO2 contents and liquidus temperatures, and between liquidus temperatures and melt water contents. Both increasing melt SiO2 content and decreasing liquidus temperature have the effect of increasing the melt viscosity, producing a linear positive correlation between logarithmic values of melt viscosity and linear values of melt SiO2 content. For a specific melt SiO2 content, an increase in liquidus temperature causes a decrease in melt viscosity, whereas a decrease in water content causes an increase in melt viscosity. As a result of this opposing effect, the melt viscosity is strongly correlated with the melt SiO2 content (the correlation coefficient of ∼1). Based on this relationship, an empirical equation predicting logarithmic values of preeruptive melt viscosity is proposed as a linear function of melt SiO2 content, referred to as the melt viscosity scale. The equation reproduces melt viscosities for compiled experimental melts and natural melts with root-mean-square deviation of ∼0.4 and ∼0.5 log units, respectively. This method provides order-of-magnitude estimates for preeruptive melt viscosity. Its strength is in being applicable to examples for which a full dataset of preeruptive magmatic properties is lacking or has large uncertainties (e.g., slowly cooled lavas). The simplicity of this method enables us to easily and promptly estimate preeruptive melt viscosity. Combined with rheological models for multiphase magmas, the present method can be applied widely and thus greatly increase the number of case studies which include evidence-based estimates of preeruptive magma viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andújar J, Scaillet B (2012) Relationships between pre-eruptive conditions and eruptive styles of phonolite–trachyte magmas. Lithos. doi:10.1016/j.lithos.2012.05.009

    Google Scholar 

  • Arce JL, Gardner JE, Macías JL (2013) Pre-eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico. J Volcanol Geotherm Res 249:49–65. doi:10.1016/j.jvolgeores.2012.09.012

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582. doi:10.1093/petrology/egh019

    Article  Google Scholar 

  • Bagdassarov NS, Dingwell DB, Webb SL (1994) Viscoelasticity of crystal- and bubble-bearing rhyolite melts. Phys Earth Planet Inter 83:83–99. doi:10.1016/0031-9201(94)90066-3

    Article  Google Scholar 

  • Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32:365–401. doi:10.1093/petrology/32.2.365

  • Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46:135–167. doi:10.1093/petrology/egh066

  • Blatter DL, Carmichael ISE (2001) Hydrous phase equilibria of a Mexican high-silica andesite: a candidate for a mantle origin? Geochim Cosmochim Acta 65:4043–4065. doi:10.1016/S0016-7037(01)00708-6

    Article  Google Scholar 

  • Blundy J, Cashman K (2008) Petrologic reconstruction of magmatic system variables and processes. Rev Mineral Geochem 69:179–239. doi:10.2138/rmg.2008.69.6

    Article  Google Scholar 

  • Bogaerts M, Scaillet B, Auwera JV (2006) Phase equilibria of the Lyngdal granodiorite (Norway): implications for the origin of metaluminous ferroan granitoids. J Petrol 47:2405–2431. doi:10.1093/petrology/egl049

    Article  Google Scholar 

  • Botcharnikov RE, Almeev RR, Koepke J, Holtz F (2008a) Phase relations and liquid lines of descent in hydrous ferrobasalt—implications for the Skaergaard intrusion and Columbia river flood basalts. J Petrol 49:1687–1727. doi:10.1093/petrology/egn043

    Article  Google Scholar 

  • Botcharnikov RE, Holtz F, Almeev RR, Sato H, Behrens H (2008b) Storage conditions and evolution of andesitic magma prior to the 1991–95 eruption of Unzen volcano: constraints from natural samples and phase equilibria experiments. J Volcanol Geotherm Res 175:168–180. doi:10.1016/j.jvolgeores.2008.03.026

    Article  Google Scholar 

  • Browne B, Izbekov P, Eichelberger J, Churikova T (2010) Pre-eruptive storage conditions of the Holocene dacite erupted from Kizimen Volcano, Kamchatka. International Geology Review 52:95–110. doi:10.1080/00206810903332413

    Article  Google Scholar 

  • Caricchi L, Burlini L, Ulmer P, Gerya T, Vassalli M, Papale P (2007) Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet Sci Lett 264:402–419. doi:10.1016/j.epsl.2007.09.032

    Article  Google Scholar 

  • Castro JM, Schipper CI, Mueller SP, Militzer AS, Amigo A, Parejas CS, Jacob D (2013) Storage and eruption of near-liquidus rhyolite magma at Cordón Caulle, Chile. Bull Volcanol 75:702. doi:10.1007/s00445-013-0702-9

    Article  Google Scholar 

  • Costa F, Scaillet B, Pichavant M (2004) Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite from Volcán San Pedro (36 °S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J Petrol 45:855–881. doi:10.1093/petrology/egg114

    Article  Google Scholar 

  • Cottrell E, Gardner JE, Rutherford MJ (1999) Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite. Contrib Mineral Petrol 135:315–331. doi:10.1007/s004100050514

    Article  Google Scholar 

  • Couch S, Harford CL, Sparks RSJ, Carroll MR (2003) Experimental constraints on the conditions of formation of highly calcic plagioclase microlites at the Soufriere Hills Volcano, Montserrat. J Petrol 44:1455–1475. doi:10.1093/petrology/44.8.1455

    Article  Google Scholar 

  • Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Min 80:319–328

    Google Scholar 

  • di Carlo I, Pichavant M, Rotolo SG, Scaillet B (2006) Experimental crystallization of a high-K arc basalt: the Golden Pumice, Stromboli volcano (Italy). J Petrol 47:1317–1343. doi:10.1093/petrology/egl011

    Article  Google Scholar 

  • Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Petrol 152:611–638. doi:10.1007/s00410-006-0123-2

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134. doi:10.1016/j.epsl.2008.03.038

    Article  Google Scholar 

  • Grove TL, Donnelly-Noran JM, Housh T (1997) Magmatic processes that generated the rhyolite of Grass Mountain, Medicine Lake volcano, N. California. Contrib Mineral Petrol 127:205–223. doi:10.1007/s004100050276

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Muntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533. doi:10.1007/s00410-003-0448-z

    Article  Google Scholar 

  • Hamada M, Fujii T (2008) Experimental constraints on the effects of pressure and H2O on the fractional crystallization of high-Mg island arc basalt. Contrib Mineral Petrol 155:767–790. doi:10.1007/s00410-007-0269-6

    Article  Google Scholar 

  • Hammer JE, Rutherford MJ, Hildreth W (2002) Magma storage prior to the 1912 eruption at Novarupta, Alaska. Contrib Mineral Petrol 144:144–162. doi:10.1007/s00410-002-0393-2

    Article  Google Scholar 

  • Holtz F, Sato H, Lewis J, Behrens H, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen dacite, Japan. Part. 1: phase relations, phase composition and pre-eruptive condition. J Petrol 46:319–337. doi:10.1093/petrology/egh077

    Article  Google Scholar 

  • Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71:403–416. doi:10.1016/j.gca.2006.09.003

    Article  Google Scholar 

  • Imai N, Terashima S, Itoh S, Ando A (1995) 1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, “igneous rock series”. Geostand Newsl 19:135–213. doi:10.1111/j.1751-908X.1995.tb00158.x

    Article  Google Scholar 

  • Ishibashi H (2009) Non-Newtonian behavior of plagioclase-bearing basaltic magma: subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan. J Volcanol Geotherm Res 181:78–88. doi:10.1016/j.jvolgeores.2009.01.004

    Article  Google Scholar 

  • Izbekov P, Gardner JE, Eichelberger JC (2004) Comagmatic granophyre and dacite from Karymsky volcanic center, Kamchatka: experimental constraints for magma storage conditions. J Volcanol Geotherm Res 131:1–18. doi:10.1016/S0377-0273(03)00312-3

    Article  Google Scholar 

  • Jellinek AM, DePaolo DJ (2003) A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull Volcanol 65:363–381. doi:10.1007/s00445-003-0277-y

    Article  Google Scholar 

  • Johnson MC, Anderson AT, Rutherford MJ (1994) Pre-eruptive volatile content of magmas. In: Carrol MR, Holloway JR (eds) Volatiles in magma, vol 30, Rev Mineral Geochem., pp 281–330

    Google Scholar 

  • Kent AJR, Darr C, Koleszar AM, Salisbury MJ, Cooper KM (2010) Preferential eruption of andesitic magmas through recharge filtering. Nat Geosci 3:631–636. doi:10.1038/NGEO924

    Article  Google Scholar 

  • Larsen JF (2006) Rhyodacite magma storage conditions prior to the 3430 yBP caldera-forming eruption of Aniakchak volcano, Alaska. Contrib Mineral Petrol 152:523–540. doi:10.1007/s00410-006-0121-4

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750. doi:10.1093/petrology/27.3.745

    Article  Google Scholar 

  • Lejeune A-M, Richet P (1995) Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J Geophys Res 100:4215–4229. doi:10.1029/94JB02985

    Article  Google Scholar 

  • Lejeune AM, Bottinga Y, Trull TW, Richet P (1999) Rheology of bubble-bearing magmas. Earth Planet Sci Lett 166:71–84. doi:10.1016/S0377-0273(98)00091-2

    Article  Google Scholar 

  • Manga M, Loewenberg M (2001) Viscosity of magmas containing highly deformable bubbles. J Volcanol Geotherm Res 105:19–24. doi:10.1016/S0377-0273(00)00239-0

    Article  Google Scholar 

  • Marsh BD (1988) Crystal capture, sorting, and retention in convecting magma. Geol Soc Am Bull 100:1720–1737. doi:10.1130/0016-7606(1988)100<1720:CCSARI>2.3.CO;2

    Article  Google Scholar 

  • Martel C, Pichavant M, Bourdier J-L, Traineau H, Holtz F, Scaillet B (1998) Magma storage conditions and control of eruption regime in silicic volcanoes: experimental evidence from Mt. Pelée. Earth Planet Sci Lett 156:89–99. doi:10.1016/S0012-821X(98)00003-X

    Article  Google Scholar 

  • Martel C, Pichavant M, Holtz F, Scaillet B (1999) Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar. J Geophys Res 104:29453–29470. doi:10.1029/1999JB900191

  • Melekhova E, Annen C, Blundy J (2013) Compositional gaps in igneous rock suites controlled by magma system heat and water content. Nat Geosci 6:385–390. doi:10.1038/NGEO1781

  • Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319. doi:10.1007/s004100050367

  • Moune S, Holtz F, Botcharnikov RE (2008) Sulphur solubility in andesitic to basaltic melts: implications for Hekla volcano. Contrib Mineral Petrol 157:691–707. doi:10.1007/s00410-008-0359-0

    Article  Google Scholar 

  • Parman SW, Grove TL, Kelley KA, Plank T (2011) Along-arc variations in the pre-eruptive H2O contents of Mariana arc magmas inferred from fractionation paths. J Petrol 52:257–278. doi:10.1093/petrology/egq079

    Article  Google Scholar 

  • Pertermann M, Lundstrom CC (2006) Phase equilibrium experiments at 0.5 GPa and 1100–1300 °C on a basaltic andesite from Arenal volcano, Costa Rica. J Volcanol Geotherm Res 157:222–235. doi:10.1016/j.jvolgeores.2006.03.043

  • Pichavant M, Macdonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol 154:535–558. doi:10.1007/s00410-007-0208-6

    Article  Google Scholar 

  • Pichavant M, Martel C, Bourdier J, Scaillet B (2002) Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelee (Martinique, Lesser Antilles Arc). J Geophys Res 107:ECV 1-1–ECV 1–28. doi:10.1029/2001JB000315

    Google Scholar 

  • Pichavant M, Di Carlo I, Le Gac Y, Rotolo SG, Scaillet B (2009) Experimental constraints on the deep magma feeding system at Stromboli volcano, Italy. J Petrol 50:601–624. doi:10.1093/petrology/egp014

    Article  Google Scholar 

  • Pinkerton H, Stevenson RJ (1992) Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J Volcanol Geotherm Res 53:47–66. doi:10.1016/0377-0273(92)90073-M

    Article  Google Scholar 

  • Pistone M, Caricchi L, Ulmer P, Burlini L, Ardia P, Reusser E, Marone F, Arbaret L (2012) Deformation experiments of bubble- and crystal-bearing magmas: rheological and microstructural analysis. J Geophys Res 117:B05208. doi:10.1029/2011JB008986

    Google Scholar 

  • Plank T, Kelley KA, Zimmer MM, Hauri EH, Wallace PJ (2013) Why do mafic arc magmas contain ∼4 wt% water on average? Earth Planet Sci Lett 364:168–179. doi:10.1016/j.epsl.2012.11.044

  • Rubin AM (1995) Getting granite dikes out of the source region. J Geophys Res 100:5911–5929. doi:10.1029/94JB02942

    Article  Google Scholar 

  • Rutherford MJ, Sigurdsson H, Carey S, Davis A (1985) The May 18, 1980, eruption of Mount St. Helens 1. Melt composition and experimental phase equilibria. J Geophys Res 90:2929–2947. doi:10.1029/JB090iB04p02929

    Article  Google Scholar 

  • Saito G, Kazahaya K, Shinohara H, Stimac J, Kawanabe Y (2001) Variation of volatile concentration in a magma chamber system of Satsuma-Iwojima volcano deduced from melt inclusion analyses. J Volcanol Geotherm Res 108:11–31. doi:10.1016/S0377-0273(00)00276-6

    Article  Google Scholar 

  • Saito G, Stimac JA, Kawanabe Y, Goff F (2002) Mafic-felsic magma interaction at Satsuma-Iwojima volcano, Japan: evidence from mafic inclusions in rhyolites. Earth Planets Space 54:303–325. doi:10.1186/BF03353030

    Article  Google Scholar 

  • Sato H, Suzuki-Kamata K, Sato E, Sano K, Wada K, Imura R (2013) Viscosity of andesitic lava and its implications for possible drain-back processes in the 2011 eruption of the Shinmoedake volcano, Japan. Earth Planets Space 65:623–631. doi:10.5047/eps.2013.05.018

    Article  Google Scholar 

  • Scaillet B, Evans W (1999) The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T-fO2-fH2O conditions of dacite magma. J Petrol 40(3):381–411. doi:10.1093/petroj/40.3.381

    Article  Google Scholar 

  • Scaillet B, Pichavant M, Roux J (1995) Experimental crystallization of leucogranite magmas. J Petrol 36:663–705. doi:10.1093/petrology/36.3.663

    Article  Google Scholar 

  • Scaillet B, Holtz F, Pichavant M (1998) Phase equilibrium constraints on the viscosity of silicic magmas: 1. Volcanic–plutonic comparison. J Geophys Res 103:27257–27266. doi:10.1029/98JB02469

    Article  Google Scholar 

  • Schmitt AK (2001) Gas-saturated crystallization and degassing in large-volume, crystal-rich dacitic magmas from the Altiplano-Puna, northern Chile. J Geophys Res 106:30561–30578. doi:10.1029/2000JB000089

    Article  Google Scholar 

  • Shaw HR (1972) Viscosity of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272:870–893. doi:10.2475/ajs.272.9.870

    Article  Google Scholar 

  • Shcherbakov VD, Neill OK, Izbekov PE, Plechov Y (2013) Phase equilibria constraints on pre-eruptive magma storage conditions for the 1956 eruption of Bezymianny Volcano, Kamchatka, Russia. J Volcanol Geotherm Res 263:132–140. doi:10.1016/j.jvolgeores.2013.02.010

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166. doi:10.1007/BF00283225

    Article  Google Scholar 

  • Stein DJ, Spera FJ (2002) Shear viscosity of rhyolite-vapor emulsions at magmatic temperatures by concentric cylinder rheometry. J Volcanol Geotherm Res 113:243–258. doi:10.1016/S0377-0273(01)00260-8

  • Szramek L, Gardner JE, Larsen J (2006) Degassing and microlite crystallization of basaltic andesite magma erupting at Arenal Volcano, Costa Rica. J Volcanol Geotherm Res 157:182–201

    Article  Google Scholar 

  • Takagi D, Sato H, Nakagawa M (2005) Experimental study of a low-alkali tholeiite at 1–5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite. Contrib Mineral Petrol 149:527–540

  • Takeuchi S (2004) Precursory dike propagation control of viscous magma eruptions. Geology 32:1001–1004. doi:10.1130/G20792.1

    Article  Google Scholar 

  • Takeuchi S (2011) Preeruptive magma viscosity: an important measure of magma eruptibility. J Geophys Res 116:B10201. doi:10.1029/2011JB008243

    Article  Google Scholar 

  • Takeuchi S, Nakamura M (2001) Role of precursory less-viscous mixed magma in the eruption of phenocryst-rich magma: evidence from the Hokkaido-Komagatake 1929 eruption. Bull Volcanol 63:365–376. doi:10.1007/s004450100151

    Article  Google Scholar 

  • Tomiya A, Takahashi E, Furukawa N, Suzuki T (2010) Depth and evolution of a silicic magma chamber: melting experiments on a low-K rhyolite from Usu Volcano, Japan. J Petrol 51:1333–1354. doi:10.1093/petrology/egq021

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240. doi:10.1016/j.jvolgeores.2004.07.023

    Article  Google Scholar 

  • Witter JB, Kress VC, Delmelle P, Stix J (2004) Volatile degassing, petrology, and magma dynamics of the Villarrica lava lake, southern Chile. J Volcanol Geotherm Res 134:303–337. doi:10.1016/j.jvolgeores.2004.03.002

    Article  Google Scholar 

  • Zhang Y, Xu Z, Zhu M, Wang H (2007) Silicate melt properties and volcanic eruptions. Rev Geophys 45:RG4004. doi:10.1029/2006RG000216

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Akihiko Tomiya for his helpful comments on early manuscript, and Kelly Russell, Kai-Uwe Hess, and the anonymous reviewer for their critical comments that helped to improve this paper. I also thank the Associate Editor James E. Gardner and the Executive Editor James D.L. White for their editorial handling and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Takeuchi.

Additional information

Editorial responsibility: J.E. Gardner

Appendix

Appendix

Compositional relationships between major elements for starting materials and experimental melts are shown in Fig. 6. Relationships between calculated melt viscosities and compositions other than SiO2 for experimental melts are shown in Fig. 7. Correlations between melt viscosities and Al2O3 (r ∼ −0.7), FeOt (r ∼ −0.8), Na2O (r ∼ 0.4), or K2O (r ∼ 0.8) contents are weaker than that for SiO2 (Fig. 3a). Strong negative correlations are found in the relationships for MgO (r ∼ −0.9) and CaO (r ∼ −0.9). These strong correlations may be used to estimate viscosity for basaltic to basaltic andesitic melts. However, melt MgO and CaO contents are much smaller than SiO2 content so that their analysis or estimates require more accuracy, especially for andesitic to rhyolitic melts, in which MgO and CaO contents are usually <2 wt% and <6 wt%, respectively (Fig. 6). Therefore, compared with SiO2, these components are less universal as a melt viscosity scale.

Fig. 6
figure 6

a TiO2, b Al2O3, c FeOt, d MgO, and e CaO, versus SiO2 content diagrams. Dots and open squares represent the contents of experimental and natural melts (groundmass) compiled by Takeuchi (2011), respectively

Fig. 7
figure 7

Melt viscosity versus a Al2O3, b FeOt, c MgO, d CaO, e Na2O, and f K2O content diagrams. Dots and open squares represent the viscosities of experimental and natural melts (groundmass) compiled by Takeuchi (2011), respectively

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, S. A melt viscosity scale for preeruptive magmas. Bull Volcanol 77, 41 (2015). https://doi.org/10.1007/s00445-015-0929-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0929-8

Keywords

Navigation