Skip to main content
Log in

Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Auckland Volcanic Field (AVF) comprises at least 52 monogenetic eruption centres dispersed over ∼360 km2. Eruptions have occurred sporadically since 250 ka, predominantly when glacio-eustatic sea levels were lower than today. Now that around 35 % of the field is covered by shallow water (up to 30 m depth), any eruption occurring in the present or near future within this area may display Surtseyan dynamics. The North Head tuff cone evidences eruptive dynamics caused by magma interaction with seawater. The first stages of the eruption comprise a phreatomagmatic phase that built a 48-m-high tuff cone. North Head tuff deposits contain few lithic fragments (<10 vol%) and are characterized by deposits from collapsing tephra jets and fall from relatively wet tephra columns. The conditions needed for this eruption existed between 128 and 116 ka, when the sea level in the Auckland area was at least 10–12 m above the pre-eruptive surface. The hazards associated with this type of eruption pose a risk to the densely populated coastal residential zones and the activities of one of the busiest harbours in New Zealand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agustín-Flores J, Németh K, Cronin S, Lindsay J, Kereszturi G, Brand B, Smith IEM (2014) Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand). J Volcanol Geotherm Res 180:203–224

    Google Scholar 

  • Allen SR, Smith IEM (1994) Eruption styles and volcanic hazard in the Auckland Volcanic Field, New Zealand. Geosci Rep Shizuoka Univ 20:5–14

    Google Scholar 

  • Allen SR, Bryner VF, Smith IEM, Balance PF (1996) Facies analysis of pyroclast deposits within basaltic tuff-rings of the Auckland volcanic field, New Zealand. N Z J Geol Geophys 39:309–327

    Article  Google Scholar 

  • Ballance PF (1974) An inter-arc flysch basin in northern New Zealand: Waitemata Group (Upper Oligocene to Lower Miocene). J Geol 82:439–471

    Article  Google Scholar 

  • Beavan RJ, Litchfield NJ (2012) Vertical movement around New Zealand coastline: implications for sea-level rise. GNS Science Report 2012/29, September 2012, p 41

  • Bebbington MS, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73:55–72

    Article  Google Scholar 

  • Belousov A, Belousova M (2001) Eruptive processes, effects and deposits of the 1996 and the ancient basaltic phreatomagmatic eruptions in Karymskoye lake, Kamchatcka, Russia. In: White JDL, Riggs, NR (eds), Volcaniclastic sedimentation in lacustrine settings, Blackwell, Oxford, p 35–60

  • Brand BD, Clarke AB (2009) The architecture, eruptive history, and evolution of the Table Rock Complex, Oregon: from a Surtseyan to an energetic maar eruption. J Volcanol Geotherm Res 180:203–224

    Article  Google Scholar 

  • Cole PD, Guest JE, Duncan AM, Pacheco JM (2001) Capelinhos 1957–1958, Faial, Azores: deposits formed by an emergent surtseyan eruption. Bull Volcanol 63:204–220

    Article  Google Scholar 

  • Crowcroft G, Smaill A (2001) Auckland. In: Rosen MR, White PA (eds) Groundwaters of New Zealand. New Zealand Hydrological Society Inc, Wellington, New Zealand, pp 303–313

    Google Scholar 

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer-Verlag, Berlin, p 472

    Book  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos river bar: a study in the significance of grain size parameters. J Sed Petrol 27:3–26

    Article  Google Scholar 

  • Hannah J, Bell R, Paulik R (2011) Auckland: a case study in the regional assessment of long-term sea level change. FIG Working Week 2011, Bridging the gap between cultures, Marrakech, Morocco, 18–22 May 2011, p 16

  • Hayward BW (1979) Eruptive history of the early to mid Miocene Waitakere Volcanic arc and paleogeography of the Waitemata Basin, northern New Zealand. J R Soc N Z 9:297–320

    Article  Google Scholar 

  • Hayward BW (1993) The tempestuous 10 million year life of a double arc and intra-arc basin—New Zealand’s Northland Basin in the early Miocene. In: Balance PF (ed) Sedimentary basins of the world, vol 2, South Pacific sedimentary basis. Elsevier, Amsterdam, pp 113–142

    Google Scholar 

  • Hayward BW, Murdoch G, Maitland G (2011) Volcanoes of Auckland, the essential guide. Auckland University Press, New Zealand, p 234

    Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J Volcanol Geotherm Res 91:97–120

    Article  Google Scholar 

  • Inman DL (1952) Measures for describing the size distribution of sediments. J Sed Petrol 22:125–145

    Google Scholar 

  • Jakobsson SP (1972) On the consolidation and palagonitization of the tephra of the Surtsey volcanic Island, Iceland. Surtsey Res Progr Rep 6:121–128

    Google Scholar 

  • Jakobsson SP (1978) Environmental factors controlling the palagonitization of the Surtsey tephra, Iceland. Bull Geol Soc Denmark 27:91–105

    Google Scholar 

  • Kereszturi G, Németh K, Cronin JS, Agustin-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the Quaternary Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 266:16–33

    Article  Google Scholar 

  • Kereszturi G, Németh K, Cronin JS, Procter J, Agustin-Flores J (2014) Influences in the variability of eruption sequences and style transitions in the Auckland Volcanic Field. J Volcanol Geotherm Res 286:101–115

    Article  Google Scholar 

  • Kokelaar P (1983) The mechanism of Surtseyan volcanism. J Geol Soc Lond 140:939–944

    Article  Google Scholar 

  • Kokelaar P (1986) Magma-water interactions in subaqueous and emergent basaltic volcanism. Bull Volcanol 48:275–289

    Article  Google Scholar 

  • Lindsay JM, Marzocchi W, Jolly G, Constantinescu R, Selva J, Sandri L (2010) Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand National Disaster Exercise ‘Ruaumoko’. Bull Volcanol 72:185–204

    Article  Google Scholar 

  • Lorenz V (1970) Some aspects of the eruption mechanism of the Big Hole maar, central Oregon. Bull Geol Soc Am 81:1823–1830

    Article  Google Scholar 

  • Lorenz V (1974a) Studies of Surtsey tephra deposits. Surtsey Res Progr Rep 7:72–79

    Google Scholar 

  • Lorenz V (1974b) Vesiculated tuffs and associated features. Sedimentology 21:273–291

    Article  Google Scholar 

  • Machado F (1958) Acitividade Vulcanica da Ilha do Faial (1957–1958) Atlantida vII: 225–236

  • Martin U, Németh K (2005) Eruptive and depositional history of a Pliocene tuff ring that developed in a fluvio-lacustrine basin: Kissomlyó volcano (western Hungary). J Volcanol Geotherm Res 147:342–356

    Article  Google Scholar 

  • Mastin LG (2007) Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds. J Geophys Res 112:B02203. doi:10.1029/2005JB003883

    Google Scholar 

  • Mastin LG, Spieler O, Downey WS (2009) An experimental study of hydromagmatic fragmentation through energetic non-explosive magma-water mixing. J Volcanol Geotherm Res 180:161–170

    Article  Google Scholar 

  • Mattsson HB (2010) Textural variation in juvenile pyroclasts from an emergent, Surtseyan-type, volcanic eruption: the Capelas tuff cone: São Miguel (Azores). J Volcanol Geotherm Res 189:81–91

    Article  Google Scholar 

  • Molloy C, Shane P, Augustinus P (2009) Eruption recurrence rates in a basaltic volcanic field based on tephra layers in maar sediments: implications for hazards in the Auckland volcanic field. Geol Soc Am Bull 121:1666–1677

    Article  Google Scholar 

  • Murtagh RM, White JDL (2013) Pyroclastic characteristics of a subaqueous to emergent Surtseyan eruption, Black Point volcano, California. J Volcanol Geotherm Res 267:75–91

    Article  Google Scholar 

  • Németh K, Cronin SJ, Charley D, Harrison M, Garae E (2006) Exploding lakes in Vanuatu—“Surtseyan-style” eruptions witnessed on Ambae Island. Episodes 29:87–92

    Google Scholar 

  • Németh K, Cronin SJ, Smith IEM, Agustín-Flores J (2012) Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. Bull Volcanol 74:2121–2137

    Article  Google Scholar 

  • Pillans B (1983) Upper Quaternary marine terrace chronology and deformation, South Taranaki, New Zealand. Geology 11:292–297

    Article  Google Scholar 

  • Raza A, Brown RW, Ballance PF, Kamp PJJ (1999) Thermal history of the early Waitemata Basin and adjacent Waipapa Group, North Island, New Zealand. N Z J Geol Geophys 42:469–488

    Article  Google Scholar 

  • Sandri L, Jolly G, Lindsay J, Howe T, Marzocchi W (2012) Combining long- and short-term PVHA with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand. Bull Volcanol 74:705–723

    Article  Google Scholar 

  • Searle EJ (1959) Pleistocene and recent studies of the Waitemata Harbour; Part 2—North Shore and Shoal Bay. N Z J Geol Gephys 2:95–107

    Article  Google Scholar 

  • Siddall M, Chappell J, Potter E-K (2006) Eustatic sea level during the past interglacials. In: Sirocko F, Litt T, Claussen M, Sanchez-Goni M-F (eds) The climate of past interglacials. Elsevier, Amsterdam, pp 75–92

    Google Scholar 

  • Smith IEM, McGee LE, Lindsay JM (2009) Review of the petrology of the Auckland Volcanic Field. Institute of Earth Science and Engineering Report 1–2009.03. Auckland, New Zealand, p 36

    Google Scholar 

  • Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36:837–855

    Article  Google Scholar 

  • Sohn YK, Chough SK (1992) The Ichulbong tuff cone, Cheju Island, South Korea; depositional processes and evolution of an emergent, Surtseyan-type tuff cone. Sedimentology 39:523–544

    Article  Google Scholar 

  • Sohn YK, Chough SK (1993) The Udo tuff cone, Cheju Island, South Korea: transformation of pyroclastic fall into debris flow and grain flow on a steep volcanic cone slope. Sedimentology 40:769–786

    Article  Google Scholar 

  • Sohn YK, Cronin SJ, Brena M, Smith IEM, Németh K, White JDL, Murtagh RM, Jeon YM, Kwon CW (2012) Ichulbong tuff cone, Jeju Island, Korea, revisited: a compound monogenetic volcano involving multiple magma pulses, shifting vents, and discrete eruptive phases. Geol Soc Am Bull 124:259–274

    Article  Google Scholar 

  • Solgevik H, Mattsson HB, Hermelin O (2007) Growth of an emergent tuff cone: fragmentation and depositional processes recorded in the Capelas tuff cone: São Miguel, Azores. J Volcanol Geotherm Res 159:246–266

    Article  Google Scholar 

  • Spörli KB, Eastwood VR (1997) Elliptical boundary of an intraplate volcanic field, Auckland, New Zealand. J Volcanol Geotherm Res 79:169–179

    Article  Google Scholar 

  • Spörli KB, Rowland JV (2007) Superposed deformation in turbidites and syn-sedimentary slides of the tectonically active Miocene Waitemata Basin, northern New Zealand. Basin Res 19:199–216

    Article  Google Scholar 

  • Stearns HT (1953) Causes of basaltic explosions. Bull Geol Soc Am 64:599

    Article  Google Scholar 

  • Thórarinsson S (1964) Surtsey, the new island in the North Atlantic. Almenna Bókafélagith, Reykjavík, pp 1–63

    Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177:857–873

    Article  Google Scholar 

  • Verwoerd WJ, Chevallier L (1987) Contrasting types of surtseyan tuff cones on Marion and Prince Edward islands, southwest Indian Ocean. Bull Volcanol 49:399–417

    Article  Google Scholar 

  • White JDL (1991) The depositional record of small, monogenetic volcanoes within terrestrial basins. In: Fisher, R.V., and Smith, G.A. (eds) Sedimentation in volcanic settings. SEPM (Soc Sediment Geol) Spec Publ 45: 155–171

  • White JDL (1996) Pre-emergent construction of a lacustrine basaltic volcano, Pahvant Butte, Utah (USA). Bull Volcanol 58:249–262

    Article  Google Scholar 

  • White JDL (2001) Eruption and reshaping of Pahvant Butte volcano in Pleistocene lake Bonneville. In: White JDL, Riggs, NR (eds), Volcaniclastic sedimentation in lacustrine settings. Blackwell, Oxford, p 61–80

  • White JDL, Houghton B (2000) Surtseyan and related phreatomagmatic eruptions. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 495–513

    Google Scholar 

  • Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. J Volcanol Geotherm Res 17:31–63

    Article  Google Scholar 

  • Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413

    Article  Google Scholar 

  • Zimanowski B, Fröhlich G, Lorenz V (1991) Quantitative experiments on phreatomagmatic explosions. J Volcanol Geotherm Res 48:341–358

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the New Zealand Natural Hazards Research Platform and by the Determining Volcanic Risk in Auckland (DEVORA) project. We also thank the School of Environment, Auckland University, for support, as well as Kate Arentsen for prompt and valuable organizational and administrative assistance; Anja Moebis, Doug Hopcroft and Ritchie Sims for technical assistance; and Jose Rivera and Marc Adamson for providing accommodation in Auckland. We highly appreciate the time and effort of journal reviewers Volker Lorenz and Alexander Belousov, associate Editor Pierre-Simon Ross and Executive Editor James White for their recommendations to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Agustín-Flores.

Additional information

Editorial responsibility: P-S Ross

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agustín-Flores, J., Németh, K., Cronin, S.J. et al. Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand. Bull Volcanol 77, 11 (2015). https://doi.org/10.1007/s00445-014-0892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0892-9

Keywords

Navigation