Skip to main content
Log in

Post-depositional intrusion and extrusion through a scoria and spatter cone of fountain-fed nephelinite lavas (Las Herrerías volcano, Calatrava, Spain)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The effusion of lava flows from the base of volcanic cones is a common process in continental monogenetic basaltic fields. However, there are no descriptions in the literature of the structures that channel the lava output through the cone. The Pliocene-Quaternary Las Herrerías volcano (Calatrava, Spain) was constructed from the superposition of a nephelinite spatter and scoria cone and related lavas over a maar. Different eruptive styles contributed to the construction of the current volcanic cone: phreatomagmatic, Hawaiian, Strombolian and violent Strombolian. Quarrying has exposed a lava pond inside the volcanic cone, the intrusion of lava through cone-forming pyroclastic deposits and the ponding of associated lava flows within the maar crater. Low fire-fountaining activity formed a lava pond that stagnated within the crater protected by the cone’s highly welded spatter deposits at its base and overlying scoria deposits. Once the pressure exerted by ponding lava and overlying pyroclastic deposits exceeded the yield strength of the damming rock walls, the melt oozed out through fractures to form an intricate network of dikes and sills and extruded through the lower part of the volcanic cone, forming lava flows. We propose that lava intrusions similar to those here described may represent the final stage of feeding systems for lava flows associated with scoria and spatter cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ancochea E (1982) Evolución espacial y temporal del vulcanismo reciente de España. Dissertation, University Complutense of Madrid

  • Ancochea E (2004) La región volcánica del Campo de Calatrava. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 676–677

    Google Scholar 

  • Branney MJ, Kokelaar P (1992) A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull Volcanol 54(6):504–520

    Article  Google Scholar 

  • Carey R, Houghton B, Sable J, Wilson C (2007) Contrasting grain size and componentry in complex proximal deposits of the 1886 Tarawera basaltic Plinian eruption. Bull Volcanol 69:903–926

    Article  Google Scholar 

  • Carracedo Sánchez M, Sarrionandia F, Arostegui J, Eguiluz L, Gil Ibarguchi JI (2012) The transition of spatter to lava-like body in lava fountain deposits: features and examples from the Cabezo Segura volcano (Calatrava, Spain). J Volcanol Geotherm Res 227–228:1–14

    Article  Google Scholar 

  • Cebriá JM (1992) Geoquímica de las rocas basálticas y leucititas de la región volcánica de Campo de Calatrava, España. Dissertation, University Complutense of Madrid

  • Cebriá JM, López Ruiz J (1995) Alkali basalts and leucitites in an extensional intracontinental plate setting: the late Cenozoic Calatrava Volcanic Province (central Spain). Lithos 35:27–46

    Article  Google Scholar 

  • García de Madinabeitia S, Sánchez Lorda ME, Gil Ibarguchi JI (2008) Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques. Anal Chim Acta 625(2):117–130

    Article  Google Scholar 

  • González E, Gosálvez R, Becerra R, Escobar E (2007) Actividad eruptiva holocena en el Campo de Calatrava (volcán Columba, Ciudad Real, España). In: Lario J, Silva PG (eds) Proceedings of XII Reunión Nacional del Cuaternario. AEQUA, Ávila, pp 143–144

    Google Scholar 

  • Gutmann JT (1979) Structure and eruptive cycle of cinder cones in the Pinacate volcanic field and the controls of Strombolian activity. J Geol 87:448–454

    Article  Google Scholar 

  • Head JW, Wilson L (1989) Basaltic pyroclastic eruptions: Influence of gas-release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J Volcanol Geotherm Res 37(3–4):261–271

    Article  Google Scholar 

  • Heliker C, Swanson DA, Takasaki TJ (2003) The Pu‘u ‘O‘o-Kupaianaha eruption of Kilauea, Hawai‘i: the first 20 years. US Geol Surv Prof Pap 1676:1–206

    Google Scholar 

  • Herrero-Hernández A, López-Moro FJ, Gómez-Fernández F, Martín-Serrano A (2012) Interaction between intra-continental sedimentary basins and small-volume monogenetic volcanism: Argamasilla and Calzada-Moral basins, Campo de Calatrava Volcanic Field, Spain. J Iber Geol 38(2):407–428

    Google Scholar 

  • Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chem Erde-Geochem 68:117–140

    Article  Google Scholar 

  • Houghton BF, Schmincke H-U (1989) Rothenberg scoria cone, East Eifel: a complex Strombolian and phreatomagmatic volcano. Bull Volcanol 52:28–48

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Del Carlo P, Coltelli M, Sable JE, Carey R (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC. J Volcanol Geotherm Res 137:1–14

    Article  Google Scholar 

  • Kereszturi G, Németh K (2013) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology—new advances in understanding volcanic systems. InTech, Croatia, pp 3–89

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B et al (2002) Igneous rocks. A classification and glossary of terms. Cambridge University Press, Cambridge, pp 1–236

    Book  Google Scholar 

  • López Ruiz J, Cebriá JM, Doblas M (2002) Cenozoic volcanism I: the Iberian Peninsula. In: Gibbons W, Moreno T (eds) The geology of Spain. The Geological Society, London, pp 417–438

    Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lorenz V (1987) Phreatomagmatism and its relevance. Chem Geol 62:149–156

    Article  Google Scholar 

  • Martí J, Planagumà LL, Geyer A, Canal E, Pedrazzi D (2011) Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan Volcanic Zone (NE of Spain). J Volcanol Geotherm Res 201:178–193

    Article  Google Scholar 

  • Martin U, Németh K (2006) How Strombolian is a "Strombolian" scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcán Ceboruco (Mexico), and Al Haruj (Libya). J Volcanol Geotherm Res 155(1–2):104–118

    Article  Google Scholar 

  • McGetchin TR, Settle M, Chouet BA (1974) Cinder cone growth modelled after North East crater, Mt Etna, Sicily. J Geophys Res 79:3257–3272

    Article  Google Scholar 

  • Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–775

    Article  Google Scholar 

  • Németh K, White JDL (2003) Reconstructing eruption processes of a Miocene monogenetic volcanic field from vent remnants: Waipiata Volcanic Field, South Island, New Zealand. J Volcanol Geotherm Res 124:1–21

    Article  Google Scholar 

  • Parfitt EA, Wilson L (1995) Explosive volcanic eruptions: IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121:226–232

    Article  Google Scholar 

  • Parfitt EA, Wilson L, Neal CA (1995) Factors influencing the height of Hawaiian lava fountains: implications for the use of fountain height as an indicator of magma gas content. Bull Volcanol 57:440–450

    Article  Google Scholar 

  • Patrick MR, Harris AJL, Ripepe M, Dehn J, Rothery DA, Calvari S (2007) Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bull Volcanol 69:769–784

    Article  Google Scholar 

  • Pioli L, Erlund E, Johnson E, Cashman NK, Wallace P, Rosi M et al (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Paricutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271(1–4):359–368

    Article  Google Scholar 

  • Porritt LA, Russell JK, Quane SL (2012) Pele’s tears and spheres: examples from Kilauea Iki. Earth Planet Sci Lett 333–334:171–180

    Article  Google Scholar 

  • Ramírez Merino JI, Ancochea E, Pérez González A (1985) Mapa Geológico de España a escala 1: 50.000 n° 785 (19-31) Almagro, IGME, Madrid

  • Schaefer CJ, Kattenhorn SA (2004) Characterization and evolution of fractures in low volume pahoehoe lava flows, eastern Snake River Plain, Idaho. Geol Soc Am Bull 116:3–4

    Article  Google Scholar 

  • Solgevik H, Mattsson H, Hennelin O (2007) Growth of an emergent tuff cone: fragmentation and depositional processes recorded in the Capelas tuff cone, São Miguel, Azores. J Volcanol Geotherm Res 159:246–266

    Article  Google Scholar 

  • Stovall WK, Houghton BF, Gonnermann H, Fagents SA, Swanson DA (2012) Vesiculation of high fountaining Hawaiian eruptions: episodes 15 and 16 of 1959 Kilauea Iki. Bull Volcanol 74:441–455

    Article  Google Scholar 

  • Sumner JM (1998) Formation of clastogenic lava flows during fissure eruption and scoria cone collapse: the 1986 eruption of Izu-Oshima volcano, eastern Japan. Bull Volcanol 60:195–212

    Article  Google Scholar 

  • Sumner J, Blake S, Matela R, Wolff J (2005) Spatter. J Volcanol Geotherm Res 142:49–65

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc London Spec Pub 42, pp 313–345

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177(4):857–73

    Article  Google Scholar 

  • Valentine GA, Perry FV, Krier D, Keating GN, Kelley RE, Cogbill AH (2006) Small-volume basaltic volcanoes: eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol Soc Am Bull 118:1313–1330

    Article  Google Scholar 

  • Van Straaten BI, Kopylova MG, Russell JK, Scott Smith BH (2011) A rare ocurrence of a crater-filling clastogenic extrusive coherent kimberlite, Victor Northwest (Ontario, Canada). Bull Volcanol 73:1047–1062

    Article  Google Scholar 

  • Vergniolle S, Mangan M (2000) Hawaiian and Strombolian eruptions. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 447–461

    Google Scholar 

  • Vespermann D, Schmincke UH (2000) Scoria cones and tuff rings. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 683–694

    Google Scholar 

  • Walker GPL, Croasdale R (1972) Characteristics of some basaltic pyroclastics. Bull Volcanol 35:303–317

    Article  Google Scholar 

  • White JDL, Ross P-S (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29

    Article  Google Scholar 

  • Wilson M, Downes H (1991) Tertiary–Quaternary extension-related alkaline magmatism in Western and Central Europe. J Petrol 32:811–849

    Article  Google Scholar 

  • Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413

    Article  Google Scholar 

  • Wolff JA, Sumner JM (2000) Lava fountains and their products. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 321–329

    Google Scholar 

  • Yasui M, Koyaguchi T (2004) Sequence and eruptive style of the 1783 eruption of Asama Volcano, central Japan: a case study of an andesitic explosive eruption generating fountain-fed lava flow, pumice fall, scoria flow and forming a cone. Bull Volcanol 66:243–262

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the Spanish Ministerio de Ciencia e Innovación (grant CGL2008-01130/BTE) and the Universidad del País Vasco UPV/EHU (grant GIU09/61) is acknowledged. We would also like to thank Narciso Cejudo, Quarry Technical Manager, for his help with sampling work, and B. I. Van Straaten, N. Riggs, N. Lefebvre and an anonymous referee for their many corrections and suggestions that greatly contributed to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Gil Ibarguchi.

Additional information

Editorial responsibility: M.R. Patrick

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1a

Summary of the procedure for the analysis of major and trace elements. (DOCX 122 kb)

Online Resource 1b

Geochemical data (major and trace elements) of fire-fountain fed deposits of Las Herrerías volcano (Ciudad Real, Spain). (XLS 41 kb)

Online Resource 2

Stratigrafic log of Las Herrerías maar crater filling deposits. (JPEG 540 kb)

Online Resource 3

Microphotographs of the different fire-fountain fed deposits of Las Herrerías volcano (Ciudad Real, Spain): a) Spatter, b) Lava body, c) Dike, d) Coherent lava flow. (PDF 1482 kb)

Online Resource 4

Facies characteristics of coherent and pyroclastic deposits of Las Herrerías volcano (Ciudad Real, Spain). (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, M.C., Sarrionandia, F. & Ibarguchi, J.I.G. Post-depositional intrusion and extrusion through a scoria and spatter cone of fountain-fed nephelinite lavas (Las Herrerías volcano, Calatrava, Spain). Bull Volcanol 76, 860 (2014). https://doi.org/10.1007/s00445-014-0860-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0860-4

Keywords

Navigation