Skip to main content
Log in

Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation.

We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  CAS  PubMed  Google Scholar 

  • Cai B, Li CH, Huang J (2014) Systematic identification of cell wall related genes in Populus based on analysis of functional modules in co-expression network. PLoS One 9:e95176

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlowicz M (2012) Seeing forests for the trees and the carbon: Mapping the world’s forests in three dimensions. Earth Observatory (NASA). http://earthobservatory.nasa.gov/Features/ForestCarbon

  • Carpita NC (2011) Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1 → 4)-β-d-glycans. Plant Physiol 155:171–184

    Article  CAS  PubMed  Google Scholar 

  • Chen HC, Song J, Wang JP, Lin YC, Ducoste J, Shuford CM, Liu J, Li Q, Shi R, Nepomuceno A, Isik F (2014a) Systems biology of lignin biosynthesis in Populus trichocarpa: heteromeric 4-coumaric acid: coenzyme A ligase protein complex formation, regulation, and numerical modeling. Plant Cell 26:876–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Lun AT, Smyth GK (2014b) Differential expression analysis of complex RNA-seq experiments using edgeR. In: Datta S, Nettleton D (eds) Statistical analysis of next generation sequencing data. Springer International Publishing, Switzerland, pp 51–74

    Google Scholar 

  • Chiang VL (2002) From rags to riches. Nat Biotechnol 20:557–558

    Article  CAS  PubMed  Google Scholar 

  • Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16:707–726

    Article  PubMed  Google Scholar 

  • Esau K (1965) Vascular differentiation in plants. Holt Rinehart and Winston, New York

    Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley, Hoboken

    Book  Google Scholar 

  • Guitart-Pla O, Kustagi M, Rügheimer F, Califano A, Schwikowski B (2015) The Cyni framework for network inference in Cytoscape. Bioinformatics 31:1499–1501

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Thammannagowda S, Bulone V, Chiang V, Han KH, Joshi CP, Mansfield SD, Mellerowicz E, Sundberg B, Teeri T, Ellis BE (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254

    Article  CAS  PubMed  Google Scholar 

  • Larson PR (1994) The vascular cambium: development and structure. Springer, Berlin

    Book  Google Scholar 

  • Li Q, Lin YC, Sun YH, Song J, Chen H, Zhang XH, Sederoff RR, Chiang VL (2012) Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proc Natl Acad Sci USA 109:14699–14704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Min D, Wang JP, Peszlen I, Horvath L, Horvath B, Nishimura Y, Jameel H, Chang HM, Chiang VL (2011) Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiol 31:226–236

    Article  CAS  PubMed  Google Scholar 

  • Lin YC, Li W, Sun YH, Kumari S, Wei H, Li Q, Tunlaya-Anukit S, Sederoff RR, Chiang VL (2013) SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. Plant Cell 25:4324–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Filkov V, Groover A (2014a) Modeling transcriptional networks regulating secondary growth and wood formation in forest trees. Physiol Plant 151:156–163

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou J, White KP (2014b) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30:301–304

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun YH, Yuan L, Yeh TF (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci USA 110:10848–10853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucl Acids Res 40:4288–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkle SA, Dean JF (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302

    Article  CAS  PubMed  Google Scholar 

  • Netotea S, Sundell D, Street NR, Hvidsten TR (2014) ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genom 15:1

    Article  Google Scholar 

  • Perlin J (2005) A forest journey: the story of wood and civilization. The Countryman Press, Woodstock

    Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2:55–65

    Article  CAS  Google Scholar 

  • Rehfuess E, Mehta S, Prüss-Üstün A (2006) Assessing household solid fuel use: multiple implications for the Millennium development goals. Environ Health Perspect 114:373–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Reimand J, Arak T, Vilo J (2011) g:Profiler–a web server for functional interpretation of gene lists (2011 update). Nucl Acids Res 39:W307–W315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkanen KV (1976) Renewable resources for the production of fuels and chemicals. Science 191:428

    Article  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi R, Sun Y, Li Q, Heber S, Sederoff RR, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144–163

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Shuford CM, Wang JP, Sun YH, Yang Z, Chen HC, Tunlaya-Anukit S, Li Q, Liu J, Muddiman DC, Sederoff RR (2013) Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. Planta 238:487–497

    Article  CAS  PubMed  Google Scholar 

  • Song J, Lu S, Chen ZZ, Lourenco R, Chiang VL (2006) Genetic transformation of Populus trichocarpa genotype Nisqually-1: a functional genomic tool for woody plants. Plant Cell Physiol 47:1582–1589

    Article  CAS  PubMed  Google Scholar 

  • Street NR, Jansson S, Hvidsten TR (2011) A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation. BMC Plant Biol 11:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302:249–255

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, Trabucco GM, Veling MT, Lamothe R, Handakumbura PP (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571–575

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dongen S, Abreu-Goodger C (2012) Using MCL to extract clusters from networks. In: van Helden J, Toussaint A, Thieffry D (eds) Bacterial molecular networks: methods and protocols. Springer, New York, pp p281–p295

    Chapter  Google Scholar 

  • Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341:1103–1106

    Article  CAS  PubMed  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wang JP, Chuang L, Loziuk PL, Chen H, Lin YC, Shi R, Qu GZ, Muddiman DC, Sederoff RR, Chiang VL (2015) Phosphorylation is an on/off switch for 5-hydroxyconiferaldehyde O-methyltransferase activity in poplar monolignol biosynthesis. Proc Natl Acad Sci USA 112:8481–8486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JP, Naik PP, Chen HC, Shi R, Lin CY, Liu J, Shuford CM, Li Q, Sun YH, Tunlaya-Anukit S, Williams CM, Muddiman DC, Ducoste JJ, Sederoff RR, Chiang VL (2014) Complete proteomic based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic-flux and lignin. Plant Cell 26:894–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weirauch MT (2011) Gene coexpression networks for the analysis of DNA microarray data. In: Dehmer M, Emmert-Streib F, Graber A, Salvador A (eds) Applied statistics for network biology: methods in systems biology. Wiley, Hoboken, pp 215–250

    Chapter  Google Scholar 

  • Yang X, Ye CY, Bisaria A, Tuskan GA, Kalluri UC (2011) Identification of candidate genes in Arabidopsis and Populus cell wall biosynthesis using text-mining, co-expression network analysis and comparative genomics. Plant Sci 181:675–687

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Moriyama EN (2013) Comparative studies of differential gene calling using RNA-Seq data. BMC Bioinform 14:S7

    Article  Google Scholar 

  • Zhong R, Ye ZH (2014) Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Sci 229:193–207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation, Plant Genome Research Program Grant DBI-0922391, and the US Department of Energy Grant DE-SC000691. We acknowledge additional supports from the NC State University Jordan Family Distinguished Professor Endowment, the NC State University Forest Biotechnology Industrial Research Consortium, and the National Natural Science Foundation of China (NSFC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald R. Sederoff or Vincent L. Chiang.

Additional information

R. Shi and J. P. Wang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Wang, J.P., Lin, YC. et al. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa . Planta 245, 927–938 (2017). https://doi.org/10.1007/s00425-016-2640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2640-1

Keywords

Navigation