Skip to main content
Log in

Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Phyto-S1P and S1P induced stomatal closure in epidermis of pea ( Pisum sativum ) by raising the levels of NO and pH in guard cells.

Phosphosphingolipids, such as phytosphingosine-1-phosphate (phyto-S1P) and sphingosine-1-phosphate (S1P), are important signaling components during drought stress. The biosynthesis of phyto-S1P or S1P is mediated by sphingosine kinases (SPHKs). Although phyto-S1P and S1P are known to be signaling components in higher plants, their ability to induce stomatal closure has been ambiguous. We evaluated in detail the effects of phyto-S1P, S1P and SPHK inhibitors on signaling events leading to stomatal closure in the epidermis of Pisum sativum. Phyto-S1P or S1P induced stomatal closure, along with a marked rise in nitric oxide (NO) and cytoplasmic pH of guard cells, as in case of ABA. Two SPHK inhibitors, DL-threo dihydrosphingosine and N’,N’-dimethylsphingosine, restricted ABA-induced stomatal closure and prevented the increase of NO or pH by ABA. Modulators of NO or pH impaired both stomatal closure and increase in NO or pH by phyto-S1P/S1P. The stomatal closure by phyto-S1P/S1P was mediated by phospholipase D and phosphatidic acid (PA). When present, PA elevated the levels of pH, but not NO of guard cells. Our results demonstrate that stomatal closure induced by phyto-S1P and S1P depends on rise in pH as well as NO of guard cells. A scheme of signaling events initiated by phyto-S1P/S1P, and converging to cause stomatal closure, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DL-threo DHS:

DL-threo dihydrosphingosine

DMS:

N’,N’-dimethylsphingosine

LCB:

Long chain base

LCBP:

Long chain base phosphate

NO:

Nitric oxide

PA:

Phosphatidic acid

PLD:

Phospholipase D

phyto-S1P:

Phytosphingosine-1-phosphate

S1P:

Sphingosine-1-phosphate

SLAC:

Slow anion channel

SPHK:

Sphingosine kinase

References

  • Blatt MR (2000) Cellular movements and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol 16:221–241

    Article  CAS  PubMed  Google Scholar 

  • Cantrel C, Vazquez T, Puyaubert J, Rezé N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E (2011) Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189:415–427

    Article  CAS  PubMed  Google Scholar 

  • Chalfant CE, Speigel S (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 118:4605–4612

    Article  CAS  PubMed  Google Scholar 

  • Coursol S, Fan LM, Stunff HL, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signaling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423:651–654

    Article  CAS  PubMed  Google Scholar 

  • Coursol S, Stunff HL, Lynch DV, Gilroy S, Assmann SM, Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phospate on stomatal aperture. Plant Physiol 137:724–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Da Silva D, Lachaud C, Cotelle V, Brière C, Grat S, Mazars C, Thuleau P (2011) Nitric oxide production is not required for dihydrosphingosine-induced cell death in tobacco BY-2 cells. Plant Signal Behav 6:736–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Distéfano AM, Scuffi D, García-Mata C, Lamattina L, Laxalt AM (2012) Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. Planta 236:1899–1907

    Article  PubMed  Google Scholar 

  • García-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Mata C, Lamattina L (2013) Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. Plant Sci 201–202:66–73

    Article  PubMed  Google Scholar 

  • Gardiner J, Collings DA, Harper JD, Marc J (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol 44:687–696

    Article  CAS  PubMed  Google Scholar 

  • Gayatri G, Agurla S, Raghavendra AS (2013) Nitric oxide in guard cells as an important secondary messenger during stomatal closure. Front Plant Sci 4:425

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonugunta VK, Srivastava N, Puli MR, Raghavendra AS (2008) Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. Plant Cell Environ 31:1717–1724

    Article  CAS  PubMed  Google Scholar 

  • Guillas I, Zachowski A, Baudouin E (2011) A matter of fat: interaction between nitric oxide and sphingolipid signaling in plant cold response. Plant Signal Behav 6:140–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillas I, Puyaubert J, Baudouin E (2013) Nitric oxide-sphingolipid interplays in plant signaling: a new enigma from the Sphinx? Front Plant Sci 4:1–7

    Article  Google Scholar 

  • Guo L, Mishra G, Taylor K, Wang X (2011) Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem 286:13336–13345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Wang X (2012) Crosstalk between phospholipase D and sphingosine kinase in plant stress signaling. Front Plant Sci 3:1–7

    Article  Google Scholar 

  • Guo L, Mishra G, Markham J, Li M, Tawfall A, Welti R et al (2012) Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem 287:8286–8296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irving HR, Gehring CA, Parish RW (1992) Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc Natl Acad Sci USA 89:1790–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MM, Hossain MA, Jannat R, Munemasa S, Nakamura Y, Mori IC, Murata Y (2010) Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. Plant Cell Physiol 51:1721–1730

    Article  CAS  PubMed  Google Scholar 

  • Islam MN, Jacquemot MP, Coursol S, Ng CKY (2012) Sphingosine in plants: more riddles from the sphinx? New Phytol 193:51–57

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Saha A, Valon C, Leung J (2011) A brand new START: abscisic acid perception and transduction in the guard cell. Sci Signal 4:re4

    Article  PubMed  Google Scholar 

  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2 and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolla AR, Raghavendra AS (2007) Nitric oxide is a signaling intermediate during bicarbonate-induced stomatal closure in Pisum sativum. Physiol Plant 130:91–98

    Article  CAS  Google Scholar 

  • Lynch DV, Chen M, Cahoon EB (2009) Lipid signaling in Arabidopsis: no sphingosine? No problem! Trends Plant Sci 14:463–466

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, She X, Yang S (2012) Sphingosine-1-phosphate (S1P) mediates darkness-induced stomatal closure through raising cytosol pH and hydrogen peroxide (H2O2) levels in guard cells in Vicia faba. Sci China Life Sci 55:974–983

    Article  CAS  PubMed  Google Scholar 

  • Michaelson LV, Zäuner S, Markham JE, Haslam RP, Desikan R, Mugford S, Albrecht S, Warnecke D, Sperling P, Heinz E, Napier JA (2009) Functional characterization of a higher plant sphingolipid Δ4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant Physiol 149:487–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minamioka H, Imai H (2009) Sphingoid long-chain base composition of glucosylceramides in Fabaceae: a phylogenetic interpretation of Fabaceae. J Plant Res 122:415–419

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Murata Y (2011) ABA signaling in stomatal guard cells: lessons from Commelina and Vicia. J Plant Res 124:477–487

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa N, Kato M, Takahashi Y, Shimazaki K, Tamura K, Tokuji Y et al (2012) Degradation of long chain base-1-phosphate (LCBP) in Arabidopsis: functional characterization of LCBP phosphatase involved in the dehydration stress response. J Plant Res 125:439–449

    Article  CAS  PubMed  Google Scholar 

  • Ng CKY, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine 1-phosphate. Nature 410:596–599

    Article  CAS  PubMed  Google Scholar 

  • Puli MR, Raghavendra AS (2012) Pyrabactin, an ABA agonist, induced stomatal closure and changes in signaling components of guard cell in abaxial epidermis of Pisum sativum. J Exp Bot 63:1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signaling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Sheard LB, Zheng N (2009) Signal advance for abscisic acid. Nature 462:575–576

    Article  CAS  PubMed  Google Scholar 

  • Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J (2009) The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot 60:1439–1463

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Miao Y, Song CP (2014) Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytol 201:1121–1140

    Article  CAS  PubMed  Google Scholar 

  • Spiegel S, Milstien S (2002) Sphingosine 1-phosphate a key cell signaling molecule. J Biol Chem 277:25851–25854

    Article  CAS  PubMed  Google Scholar 

  • Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS (2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229:757–765

    Article  CAS  PubMed  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uraji M, Katagiri T, Okuma E, Ye W, Hossain MA, Masuda C et al (2012) Cooperative function of PLDδ and PLDα1in abscisic acid induced stomatal closure. Plant Physiol 159:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G et al (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signaling. Nature 452:487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worrall D, Liang YK, Alvarez S, Holroyd GH, Spiegel S, Panagopulos M et al (2008) Involvement of sphingosine kinase in plant cell signaling. Plant J 56:64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W (2011) Roles of heterotrimeric G proteins in guard cell ion channel regulation. Plant Signal Behav 6:986–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R et al (2009) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants (to ASR) from the Department of Biotechnology (No. BT/PR9227/PBD/16/748/2007), Council of Scientific and Industrial Research (CSIR, No. 38(1195)/08/EMR-II), JC Bose Fellow of Department of Science and Technology (No. SR/S2/JCB-06/2006), and Department of Science and Technology-Japanese Society for Promotion of Science (No. DST/INT/JSPS/P-121/10) project (to ASR & KK). MRP, PR, VA, and SA were all supported by Research Fellowships from CSIR/UGC, New Delhi, India. The facilities in our Department and School were supported by grants from DST-FIST, UGC-SAP-CAS and DBT-CREBB, all from New Delhi, India. We thank Ms Nalini, Technical Assistant, Central Instrumentation Laboratory, for her help in using the confocal microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agepati S. Raghavendra.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puli, M.R., Rajsheel, P., Aswani, V. et al. Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum . Planta 244, 831–841 (2016). https://doi.org/10.1007/s00425-016-2545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2545-z

Keywords

Navigation