Skip to main content
Log in

Rheology of lyotropic cholesteric liquid crystal forming single-wall carbon nanotube dispersions stabilized by double-stranded DNA

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheology of lyotropic cholesteric liquid crystalline phase forming double-stranded DNA (dsDNA) stabilized single-wall carbon nanotube (SWCNT) dispersions was analyzed over a wide range of SWCNT concentrations. In the semidilute regime, supernatant dispersions of dsDNA-SWCNTs showed the characteristic rheological behavior of semidilute solutions of rods predicted by the Doi-Edwards theory. These cholesterogenic liquid crystal dispersions exhibited some of the key rheological behaviors associated with lyotropic liquid crystalline polymers (LLCPs) including a non-monotonic relationship in the viscosity and moduli versus concentration curves, and the empirical Cox-Merz not being obeyed. However, the dsDNA-SWCNT viscosity versus shear rate curves exhibited an inflection point instead of the three distinct regions associated with many LLCPs and nanocylinder dispersions. This could be related to orientation defects and inherent secondary interactions between the dsDNA and the SWCNTs. Linear viscoelasticity measurements also showed similarities to other lyotropic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ao G, Nepal D, Aono M, Davis VA (2011) Cholesteric and nematic liquid crystalline phase behavior of double-stranded DNA stabilized single-walled carbon nanotube dispersions. ACS Nano 5(2):1450–1458

    Article  Google Scholar 

  • Baek SG, Magda JJ, Larson RG (1993) Rheological differences among liquid-crystalline polymers. I. The first and second normal stress differences of PBG solutions. J Rheol 37:1201

    Article  Google Scholar 

  • Baek SG, Magda JJ, Larson RG, Hudson SD (1994) Rheological differences among liquid-crystalline polymers. II. Disappearance of negative N in densely packed lyotropes and thermotropes. J Rheol 38:1473

    Article  Google Scholar 

  • Batchelor G (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41(03):545–570

    Article  Google Scholar 

  • Cassagnau P, Zhang W, Charleux B (2013) Viscosity and dynamics of nanorod (carbon nanotubes, cellulose whiskers, stiff polymers and polymer fibers) suspensions. Rheol Acta 52(10):815–822

    Article  Google Scholar 

  • Davis VA (2006) “Phase Behavior and Rheology of Single-Walled Carbon Nanotubes (SWNTs) in Superacids with Application to Fiber Spinning.” Dissertation of Doctor of Philosophy, Rice University

  • Davis VA (2011) Liquid crystalline assembly of nanocylinders. J Mater Res 26:140–153

    Article  Google Scholar 

  • Davis VA, Ericson LM, Parra-Vasquez AN, Fan H, Wang Y, Prieto V, Longoria JA, Ramesh S, Saini R, Kittrell C, Billups WE, Adams WW, Hauge RH, Smalley RE, Pasquali M (2004) Phase behavior and rheology of SWNTs in superacids. Macromolecules 37(1):154–160

    Article  Google Scholar 

  • Davis VA, Parra-Vasquez ANG, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4(12):830–834

    Article  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Flory PJ (1956) “Phase equilibria in solutions of rod-like particles.” Proceedings of the Royal Society of London. Series A. Math Physical Sci 234(1196):73–89

    Article  Google Scholar 

  • Green MJ, Parra-Vasquez ANG, Behabtu N, Pasquali M (2009) Modeling the phase behavior of polydisperse rigid rods with attractive interactions with applications to single-walled carbon nanotubes in superacids. J Chem Phys 131(8):041401

    Article  Google Scholar 

  • Grizzuti N, Cavella S, Cicarelli P (1990) Transient and steady-state rheology of a liquid crystalline hydroxypropylcellulose solution. J Rheol 34:1293

    Article  Google Scholar 

  • Hobbie EK (2010) Shear rheology of carbon nanotube suspensions. Rheol Acta 49(4):323–334

    Article  Google Scholar 

  • Hongladarom K, Burghardt WR (1993) Molecular alignment of polymer liquid crystals in shear flows. 2. Transient flow behavior in poly(benzyl glutamate) solutions. Macromolecules 26(4):785–794

    Article  Google Scholar 

  • Hongladarom K, Secakusuma V, Burghardt WR (1994) Relation between molecular orientation and rheology in lyotropic hydroxypropylcellulose solutions. J Rheol 38:1505

    Article  Google Scholar 

  • Hough LA, Islam MF, Janmey PA, Yodh AG (2004) Viscoelasticity of single wall carbon nanotube suspensions. Phys Rev Lett 93(16):1680102-1–168102-4

  • Huang CM, Magda JJ, Larson RG (1999) The effect of temperature and concentration on N and tumbling in a liquid crystal polymer. J Rheol 43:31

    Article  Google Scholar 

  • Kirkwood JG, Plock RJ (1956) Non-Newtonian viscoelastic properties of rod-like macromolecules in solution. J Chem Phys 24(4):665–669

    Article  Google Scholar 

  • Kiss G, Porter RS (1978) Rheology of concentrated solutions of poly(γ-benzyl-glutamate). J Polym Sci Polym Symp 65(1)193–211

  • Lagerwall JPF, Scalia G (2012) A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys 12(6):1387–1412

    Article  Google Scholar 

  • Larson RG (1990) Arrested tumbling in shearing flows of liquid-crystal polymers. Macromolecules 23(17):3983–3992

    Article  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York.

  • Larson RG, Mead DW (1989) Time and shear-rate scaling laws for liquid crystal polymers. J Rheol 33:1251

    Article  Google Scholar 

  • Luo Z, Song H, Feng X, Run M, Cui H, Wu L, Gao J, Wang Z (2013) Liquid crystalline phase behavior and sol–gel transition in aqueous halloysite nanotube dispersions. Langmuir 29(40):12358–12366

    Article  Google Scholar 

  • Macosko CW (1994) Rheology, principles, measurements, and applications. Wiley CVH, New York

    Google Scholar 

  • Marrucci G (1991) Rheology of nematic polymers. Liquid crystallinity in polymers. A. Ciferri. VCH Publishers, New York, pp 395–421

    Google Scholar 

  • Marrucci G, Maffettone PL (1990) Nematic phase of rodlike polymers. II. Polydomain predictions in the tumbling regime. J Rheol 34:1231

    Article  Google Scholar 

  • Marshall BD, Davis VA, Lee DC, Korgel BA (2009) Rotational and translational diffusivities of germanium nanowires. Rheol Acta 48(5):589–596

    Article  Google Scholar 

  • Mead DW, Larson RG (1990) Rheooptical study of isotropic solutions of stiff polymers. Macromolecules 23(9):2524–2533

    Article  Google Scholar 

  • Moldenaers P, Mewis J (1986) Transient behavior of liquid crystalline solutions of poly(benzylglutamate). J Rheol 30:567

    Article  Google Scholar 

  • Mori Y, Ookubo N, Hayakawa R, Wada Y (1982) Low frequency and high frequency relaxations in dynamic electric birefringence of poly(benzyl L glutamate) in m cresol. J Polym Sci Polym Phys Ed 20(11):2111–2124

    Article  Google Scholar 

  • Onogi S, Asada T (1980) Rheology and rheo-optics of polymer liquid crystals. Proceedings of the Eighth International Congress on Rheology. Plenum Press, Naples, Italy

    Google Scholar 

  • Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci 51(4):627–659

    Article  Google Scholar 

  • Parra-Vasquez ANG, Stepanek I, Davis VA, Moore VC, Haroz EH, Shaver J, Hauge RH, Smalley RE, Pasquali M (2007) Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 40(11):4043–4047

    Article  Google Scholar 

  • Sahimi M, Arbabi S (1993) Mechanics of disordered solids. II. Percolation on elastic networks with bond-bending forces. Phys Rev B 47(2):703

    Article  Google Scholar 

  • Smith DE, Perkins TT, Chu S (1996) Dynamical scaling of DNA diffusion coefficients. Macromolecules 29(4):1372–1373

    Article  Google Scholar 

  • Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21(3):1581–1589

    Article  Google Scholar 

  • Ugaz V, Cinader D, Burghardt W (1997) Origins of region I shear thinning in model lyotropic liquid crystalline polymers. Macromolecules 30(5):1527–1530

    Article  Google Scholar 

  • Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998

    Article  Google Scholar 

  • Walker L, Wagner N (1994) Rheology of region-I flow in a lyotropic liquid-crystal polymer—the effects of defect texture. J Rheol 38(5):1525–1547

    Article  Google Scholar 

  • Walker LM, Wagner NJ, Larson RG, Mirau PA, Moldenaers P (1995) The rheology of highly concentrated PBLG solutions. J Rheol 39:925

    Article  Google Scholar 

  • Wierenga AM, Philipse AP (1998) Low-shear viscosity of isotropic dispersions of (Brownian) rods and fibres; a review of theory and experiments. Colloids Surf A Physicochem Eng Asp 137(1):355–372

    Article  Google Scholar 

  • Wissbrun KF (1981) Rheology of rod-like polymers in the liquid-crystalline state. J Rheol 25(6):619–662

    Article  Google Scholar 

  • Xu T, Davis VA (2014) Liquid crystalline phase behavior of silica nanorods in dimethyl sulfoxide and water. Langmuir 30(16):4806–4813

    Article  Google Scholar 

  • Xu, T. and V. A. Davis (2015). Rheology and shear-induced textures of silver nanowire lyotropic liquid crystals. J Nanomater 2015:939587-9. doi:10.1155/2015/939587

Download references

Acknowledgments

The authors acknowledge the National Science Foundation CAREER Grant CMMI-0846629 and Fluid Dynamics Grant CBET-0854010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia A. Davis.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

 (DOCX 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, G., Nepal, D. & Davis, V.A. Rheology of lyotropic cholesteric liquid crystal forming single-wall carbon nanotube dispersions stabilized by double-stranded DNA. Rheol Acta 55, 717–725 (2016). https://doi.org/10.1007/s00397-016-0944-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0944-5

Keywords

Navigation