Skip to main content
Log in

A hierarchical multi-mode MSF model for long-chain branched polymer melts part I: elongational flow

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A novel hierarchical multi-mode molecular stress function (HMMSF) model for long-chain branched (LCB) polymer melts is proposed, which implements the basic ideas of (i) the pom-pom model, (ii) hierarchal relaxation, (iii) dynamic dilution and (iv) interchain pressure. Here, the capability of this approach is demonstrated in modelling uniaxial extensional viscosity data of numerous broadly distributed long-chain branched polymer melts with only a single non-linear parameter, the dilution modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bach A, Rasmussen HK, Hassager O (2003) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47:429–441. doi:10.1122/1.1545072

    Article  Google Scholar 

  • Bastian H (2001) Non-linear viscoelasticity of linear and long-chain-branched polymer melts in shear and extensional flows. Universität Stuttgart

  • Blackwell RJ, McLeish TCB, Harlen OG (2000) Molecular drag-strain coupling in branched polymer melts. J Rheol 44:121–136. doi:10.1122/1.551081

    Article  Google Scholar 

  • Dealy JM, Larson RG (2006) Structure and rheology of molten polymers: from structure to flow behaviour and back again. Hanser, Munich

    Book  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Gupta M (2002) Estimation of elongational viscosity of polymers from entrance loss data using individual parameter optimization. Adv Polym Tech 21:98–107. doi:10.1002/adv.10017

    Article  Google Scholar 

  • Inkson NJ, McLeish TGB, Harlen OG, Groves DJ (1999) Predicting low density polyethylene melt rheology in elongational and shear flows with pom-pom constitutive equations. J Rheol 43:873–896. doi:10.1122/1.551036

    Article  Google Scholar 

  • Marrucci G, de Cindio B (1980) The stress relaxation of molten PMMA at large deformations and its theoretical interpretation. Rheol Acta 19:68–75. doi:10.1007/BF01523856

    Article  Google Scholar 

  • Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942. doi:10.1021/ma035501u

    Article  Google Scholar 

  • McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42:81–110. doi:10.1122/1.550933

    Article  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21. doi:10.1007/BF00453459

    Article  Google Scholar 

  • Münstedt H (1979) New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J Rheol 24:847–867. doi:10.1122/1.549544

    Article  Google Scholar 

  • Narimissa E, Gupta RK, Kao N, Nguyen DA, Bhattacharya SN (2014) Extensional rheological investigation of biodegradable polylactide-nanographite platelet composites via constitutive equation modeling. Macromolec Mat Eng 299:851–868. doi:10.1002/mame.201300382

    Article  Google Scholar 

  • Narimissa E, Rolón-Garrido VH, Wagner MH (2015) Comparison between extensional rheological properties of low density polyethylene melt in SER and RME rheometric systems. AIP Conf Proc 1662, 030011. doi:10.1063/1.4918886

    Article  Google Scholar 

  • Padmanabhan M, Macosko CW (1997) Extensional viscosity from entrance pressure drop measurements. Rheol Acta 36:144–151. doi:10.1007/BF00366820

    Article  Google Scholar 

  • Pearson DS, Kiss AD, Fetters LJ, Doi M (1989) Flow-induced birefringence of concentrated polyisoprene solutions. J Rheol 33:517–535. doi:10.1122/1.550026

    Article  Google Scholar 

  • Pivokonsky R, Zatloukal M, Filip P (2006) On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts. J Non-Newtonian Fluid Mech 135:58–67. doi:10.1016/j.jnnfm.2006.01.001

    Article  Google Scholar 

  • Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts. J Rheol 49:369–381. doi:10.1122/1.1849188

    Article  Google Scholar 

  • Read DJ, Auhl D, Das C, den Doelder J, Kapnistos M, Vittorias I, McLeish TC (2011) Linking models of polymerization and dynamics to predict branched polymer structure and flow. Science 333:1871–1874. doi:10.1126/science.1207060

    Article  Google Scholar 

  • Revenu P, Guillet J, Carrot C (1993) Elongational flow of polyethylenes in isothermal melt spinning. J Rheol 37:1041–1056. doi:10.1122/1.550408

    Article  Google Scholar 

  • Rolón-Garrido VH (2014) The molecular stress function (MSF) model in rheology. Rheol Acta 53:663–700. doi:10.1007/s00397-014-0787-x

    Article  Google Scholar 

  • Rolón-Garrido VH, Pivokonsky R, Filip P, Zatloukal M, Wagner MH (2009) Modelling elongational and shear rheology of two LDPE melts. Rheol Acta 48:691–697. doi:10.1007/s00397-009-0366-8

    Article  Google Scholar 

  • Rolón-Garrido VH, Zatloukal M, Wagner MH (2013) Increase of long-chain branching by thermo-oxidative treatment of LDPE: chromatographic, spectroscopic, and rheological evidence. J Rheol 57:105–129. doi:10.1122/1.4763567

    Article  Google Scholar 

  • Sampers J, Leblans PJR (1988) An experimental and theoretical study of the effect of the elongational history on the dynamics of isothermal melt spinning. J Non-Newtonian Fluid Mech 30:325–342. doi:10.1016/0377-0257(88)85032-8

    Article  Google Scholar 

  • Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43:657–669. doi:10.1007/s00397-004-0405-4

    Article  Google Scholar 

  • Soon KH, Harkin-Jones E, Rajeev RS, Menary G, McNally T, Martin PJ, Armstrong C (2009) Characterisation of melt-processed poly(ethylene terephthalate)/synthetic mica nanocomposite sheet and its biaxial deformation behaviour. Polym Inter 58:1134–1141. doi:10.1002/pi.2641

    Article  Google Scholar 

  • Wagner MH (2011) The effect of dynamic tube dilation on chain stretch in nonlinear polymer melt rheology. J Non-Newtonian Fluid Mech 166:915–924. doi:10.1016/j.jnnfm.2011.04.006

    Article  Google Scholar 

  • Wagner MH (2014) Scaling relations for elongational flow of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene. Rheol Acta 53:765–777. doi:10.1007/s00397-014-0791-1

    Article  Google Scholar 

  • Wagner MH, Rolón-Garrido VH (2009a) Nonlinear rheology of linear polymer melts: modeling chain stretch by interchain tube pressure and Rouse time. Korea Australia Rheol J 21:203–211

    Google Scholar 

  • Wagner MH, Rolón-Garrido VH (2009b) Recent advances in constitutive modeling of polymer melts. novel trends of rheology III. AIP Conf Proc 1152:16–31. doi:10.1063/1.3203266

    Article  Google Scholar 

  • Wagner MH, Schaeffer J (1992) Nonlinear strain measures for general biaxial extension of polymer melts. J Rheol 36:1–26. doi:10.1122/1.550338

    Article  Google Scholar 

  • Wagner MH, Schaeffer J (1993) Rubbers and polymer melts: universal aspects of nonlinear stress-strain relations. J Rheol 37:643–661. doi:10.1122/1.550388

    Article  Google Scholar 

  • Wagner MH, Schaeffer J (1994) Assessment of nonlinear strain measures for extensional and shearing flows of polymer melts. Rheol Acta 33:506–516. doi:10.1007/BF00366335

    Article  Google Scholar 

  • Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47:779–793. doi:10.1122/1.1562155

    Article  Google Scholar 

  • Wagner MH, Kheirandish S, Hassager O (2005) Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. J Rheol 49:1317–1327. doi:10.1122/1.2048741

    Article  Google Scholar 

  • Wagner MH, Kheirandish S, Stange J, Münstedt H (2006) Modeling elongational viscosity of blends of linear and long-chain branched polypropylenes. Rheol Acta 46:211–221. doi:10.1007/s00397-006-0108-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred H. Wagner.

Additional information

Víctor H. Rolón-Garrido passed away on June 8, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narimissa, E., Rolón-Garrido, V.H. & Wagner, M.H. A hierarchical multi-mode MSF model for long-chain branched polymer melts part I: elongational flow. Rheol Acta 54, 779–791 (2015). https://doi.org/10.1007/s00397-015-0879-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0879-2

Keywords

Navigation