Skip to main content
Log in

Modified Bautista–Manero (MBM) modelling for hyperbolic contraction–expansion flows

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this study, modelling of network-structured material flow is considered through a rounded-corner, hyperbolic 4:1:4 contraction–expansion geometry, under axisymmetric configuration. Three representative constitutive models are adopted to represent networked behaviour and to investigate the flow of wormlike micellar fluids in this context. This includes the modified Bautista–Manero (MBM) model (for base thixotropic properties), some newly proposed micellar models (NM_τ p and NM_T; for advanced thixotropic modelling), and the EPPT model (for contrast against non-thixotropic properties). In this configuration, emphasis is placed upon interpretation of flow behaviour for these constitutive models, against their response in simple rheometrical flows. To best determine the factors that contribute to epd prediction, current findings have also been contrasted against those reported earlier in López-Aguilar et al. (J Non-Newtonian Fluid Mech 204:7–21, 2014), for the counterpart abrupt rounded-corner, axisymmetric 4:1:4 contraction–expansion flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. \( \left({\xi}_{\eta_{p0}}=k/{\eta}_{\infty}\kern0.5em {\eta}_{p0}\kern0.5em {\eta}_{p0}+{\eta}_s\kern0.5em U/L\right) \) is the destruction dimensionless parameter for MBM.

References

  • Al-Muslimawi A, Tamaddon-Jahromi HR., Webster MF (2013) Simulation of viscoelastic and viscoelastoplastic die-swell flows. J Non-Newtonian Fluid Mech 191:45–56. DOI:10.1016/j.jnnfm.2012.08.004

    Article  Google Scholar 

  • Anderson VJ, Pearson JRA, Boek ES (2006) The rheology of worm-like micellar fluids. In: Binding DM, Walters K (eds) Rheology reviews. British Society of, Rheology, pp. 217–253

    Google Scholar 

  • Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Bautista F, de Santos JM, Puig JE, Manero O (1999) Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model. J Non-Newtonian Fluid Mech 80:93–113

    Article  Google Scholar 

  • Bautista F, Soltero JFA, Pérez-López JH, Puig JE, Manero O (2000) On the shear banding flow of elongated micellar solutions. J Non-Newtonian Fluid Mech 94:57–66

    Article  Google Scholar 

  • Belblidia F, Matallah H, Webster MF (2008) Alternative subcell discretisations for viscoelastic flow: velocity-gradient approximation. J Non-Newtonian Fluid Mech 151:69–88

    Article  Google Scholar 

  • Binding DM, Phillips PM, Phillips TN (2006) Contraction/expansion flows: the pressure drop and related issues. J Non-Newtonian Fluid Mech 137:31–38

    Article  Google Scholar 

  • Boek ES, Jusufi A, Löwen H., Maitland GC (2002) Molecular design of responsive fluids: molecular dynamics studies of viscoelastic surfactant solutions. J of Physics: Condensed Matter 14:9413–9430

    Google Scholar 

  • Boek ES, Padding JT, Anderson VJ, Tardy PMJ, Crawshaw JP, Pearson JRA (2005) Constitutive equations for extensional flow of wormlike micelles: stability analysis of the Bautista-Manero model. J Non-Newtonian Fluid Mech 126:39–46

    Article  Google Scholar 

  • Cates ME (1990) Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers. J Phys Chem 94(1):371–375

    Article  Google Scholar 

  • Cates ME, Fielding SM (2006) Rheology of giant micelles. Adv Phys 55(7–8):799–879

    Article  Google Scholar 

  • Cromer M, Cook LP, McKinley GH (2011) Pressure-driven flow or wormlike micellar solutions in rectilinear micro-channels. J Non-Newtonian Fluid Mech 166:180–193

    Article  Google Scholar 

  • Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970

    Article  Google Scholar 

  • Echendu SOS, Belblidia F, Tamaddon-Jahromi HR, Webster MF (2011) Modelling with viscous and viscoplastic materials under combining and separating flow configurations. Mech Time-Depend Mater 15:407–428

    Article  Google Scholar 

  • Galindo-Rosales FJ, Alves MA, Oliveira MSN (2013) Microdevices for extensional rheometry of low viscosity elastic liquids: a review. Microfluid Nanofluid 14:1–19

    Article  Google Scholar 

  • Galindo-Rosales FJ., Oliveira MSN (2014) Optimized cross-slot microdevices for homogeneous extension. RSC Advances 4:7799–7804

    Article  Google Scholar 

  • Haward SJ, Oliveira MSN, Alves MA, McKinley GH (2012) Optimized cross-slot flow geometry for microfluidic extensional rheometry. Phys Rev Lett 109:128301

    Article  Google Scholar 

  • López-Aguilar JE, Webster MF, Tamaddon-Jahromi HR, Manero O (2014) A new constitutive model for worm-like micellar systems—numerical simulation of confined contraction-expansion flows. J Non-Newtonian Fluid Mech 204:7–21

    Article  Google Scholar 

  • López-Aguilar JE, Webster MF, Tamaddon-Jahromi HR, Manero O (2015) High-Weissenberg predictions for micellar fluids in contraction–expansion flows. J Non-Newtonian Fluid Mech 222:190–208

  • Manero O, Baustista F, Soltero JFA, Puig JE (2002) Dynamics of worm-like micelles: the Cox-Merz rule. J Non-Newtonian Fluid Mech 106:1–15

    Article  Google Scholar 

  • Nyström M, Tamaddon-Jahromi HR, Stading M, Webster M.F (2012) Numerical simulations of Boger fluids through different contraction configurations for the development of a measuring system for extensional viscosity. Rheol Acta 51:713–727

  • Ober TJ, Haward SJ, Pipe CJ, Soulages J, McKinley GH (2013) Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheol Acta 52(6):529–546

    Article  Google Scholar 

  • Pipe CJ, McKinley GH (2009) Microuidic rheometry. Mech Res Commun 36:110–120

    Article  Google Scholar 

  • Puangkird B, Belblidia F, Webster MF (2009) Numerical simulation of viscoelastic fluids in cross-slot devices. J Non-Newtonian Fluid Mech 162:1–20

    Article  Google Scholar 

  • Rosen MJ, Dahanayake M (2000) Industrial utilization of surfactants: principle and practice, Champaign, IL, AOCS Press

  • Rothstein JP, McKinley GH (2001) The axisymmetric contraction-expansion: the role of extesional rheology on vortex growth dynamics and the enhanced pressure drop. J Non-Newtonian Fluid Mech 98:33–63

    Article  Google Scholar 

  • Spenley NA, Cates ME, McLeish TCB (1993) Nonlinear rheology of wormlike micelles. Phys Rev Lett 71:939–942

    Article  Google Scholar 

  • Tabatabaei S, Tamaddon-Jahromi HR, Webster MF, Williams PR, Holder AJ, Lewis KE, Davies GA, Griffin L, Ebden P, Askill C (2015) A CaBER computational–experimental rheological study on human sputum. J Non-Newtonian Fluid Mech 222:272–287

    Article  Google Scholar 

  • Tamaddon-Jahromi HR, Webster MF, Aguayo JP, Manero O (2011a) Numerical investigation of transient contraction flows for wormk-like micellar systems using Bautista-Manero models. J Non-Newtonian Fluid Mech 166:102–117

    Article  Google Scholar 

  • Tamaddon-Jahromi HR, Webster MF, Williams PR (2011b) Excess pressure drop and drag calculations for strain-hardening fluids with mild shear-thinning: contraction and falling sphere problems. J Non-Newtonian Fluid Mech 166:939–950

    Article  Google Scholar 

  • Tanner R (2000) Engineering rheology, Oxford Engineering Science Series, Second edn

  • Vazquez PA, McKinley GH, Cook LP (2007) A network scission model for wormlike micellar solutions I. Model formulations and viscometric flow predictions. J Non-Newtonian Fluid Mech 144:122–139

    Article  Google Scholar 

  • Walters K, Webster MF (2003) The distinctive CFD challenges of computational rheology. Int. J. Numer. Meth. Fluids 43:577–596

    Article  Google Scholar 

  • Walters K, Tamaddon-Jahromi HR, Webster MF, Tomé MF, McKee S (2009) The competing roles of extensional viscosity and normal stress difference in complex flows of elastic liquids. Korea-Aust Rheol J 21:225–233

    Google Scholar 

  • Wapperom P, Webster MF (1998) A second-order hybrid finite-element/volume method for viscoelastic flows. J Non-Newtonian Fluid Mech 79:405–431

    Article  Google Scholar 

  • Webster MF, Tamaddon-Jahromi HR, Aboubacar M (2004) Transient viscoelastic flows in planar contractions. J Non-Newtonian Fluid Mech 118:83–101

    Article  Google Scholar 

  • Webster MF, Tamaddon-Jahromi HR, Aboubacar M (2005) Time-dependent algorithms for viscoelastic flow: finite element/volume schemes. Numer Meth Part Differ Eq 21:272–296

    Article  Google Scholar 

  • Yang J (2002) Viscoelastic wormlike micelles and their applications, curr. Opin. Colloid Interface Sci 7:276–281

    Article  Google Scholar 

  • Zakin JL, Lu B, Bewerdorff NW (1998) Surfactant drag reduction. Rev Chem Eng 14(45):253–320

    Google Scholar 

  • Zhou L, Cook LP, McKinley GH (2010) Probing shear banding transitions of the VCM model for entangled wormlike micellar solutions using large amplitude oscillatory shear (Laos) deformations. J Non-Newtonian Fluid Mech 165:1462–1472

    Article  Google Scholar 

Download references

Acknowledgements

Financial support is gratefully acknowledged to the first author (S. Tabatabaei) from Procter and Gamble Co. during the course of this research. Financial support (scholarship to J.E. López-Aguilar) from Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Webster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabaei, S., López-Aguilar, J.E., Tamaddon-Jahromi, H.R. et al. Modified Bautista–Manero (MBM) modelling for hyperbolic contraction–expansion flows. Rheol Acta 54, 869–885 (2015). https://doi.org/10.1007/s00397-015-0870-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0870-y

Keywords

Navigation