Skip to main content
Log in

Changes in the rheology of nano-structured suspensions by adsorption of the protein α-lactalbumin on the surface of silica particles

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A rheological phenomenon associated to the adsorption of a soluble protein in the surface of silica nanoparticles is reported along the mechanisms that could explain it. Rheological behavior and structural relaxation of hydrophilic fumed silica suspensions in the absence and presence of α-lactalbumin were studied at pH values 2, 4, and 6 using rheological tests and dynamic light scattering (DLS). The addition of α-lactalbumin caused an increase in viscosity and elasticity of the samples at pHs 2 and 4, whereas an opposite effect was observed at pH 6. Structural relaxation of the nanoparticles forming the suspensions slowed down upon protein addition at pHs 2 and 4 but did not change significantly at pH 6. Changes in rheological properties and structural relaxation were attributed to electrostatic interactions induced by the changes in the silica surface charges at the different pH studied; also by perturbation of the short-range interactions (pH 2), protein bridging (pH 4) and better dispersion of particles (pH 6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103(2):253–258. doi:10.1007/s00436-008-0975-7

    Article  Google Scholar 

  • Barnes HA, Nguyen QD (2001) Rotating vane rheometry—a review. J Non-Newtonian Fluid Mech 98:1–14

    Article  Google Scholar 

  • Bharti B, Meissner J, Findenegg GH (2011) Aggregation of silica nanoparticles directed by adsorption of lysozyme. Langmuir 27(16):9823–9833. doi:10.1021/la201898v

    Article  Google Scholar 

  • Brinker CJ, Scherer GW (1990) Sol–gel science: The Physics and Chemistry of Sol–gel Processing. Academic Press, San Diego

  • Brown MA, Huthwelker T, Redondo AB, Janousch M, Faubel M, Arrell CA, van Bokhoven JA (2012) Changes in the silanol protonation state measured in situ at the silica-aqueous interface. J Phys Chem Lett 3(2):231–235. doi:10.1021/Jz201533w

    Article  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104(7):2050–2055. doi:10.1073/pnas.0608582104

    Article  Google Scholar 

  • Cohen I, Davidovitch B, Schofield AB, Brenner MP, Weitz DA (2006) Slip, yield, and bands in colloidal crystals under oscillatory shear. Phys Rev Lett 97(21):215502-1–215502-4. doi:10.1103/PhysRevLett.97.215502

    Article  Google Scholar 

  • Devineau S, Zanotti JM, Loupiac C, Zargarian L, Neiers F, Pin S, Renault JP (2013) Myoglobin on silica: a case study of the impact of adsorption on protein structure and dynamics. Langmuir 29(44):13465–13472. doi:10.1021/La4035479

    Article  Google Scholar 

  • Ge J, Lu DN, Liu ZX, Liu Z (2009) Recent advances in nanostructured biocatalysts. Biochem Eng J 44(1):53–59. doi:10.1016/j.bej.2009.01.002

    Article  Google Scholar 

  • Gunko VM, Turov VV, Zarko VI, Dudnik VV, Tischenko VA, Kazakova OA, Chuiko AA (1997) Aqueous suspensions of fumed silica and adsorption of proteins. J Colloid Interface Sci 192(1):166–178. doi:10.1006/jcis.1997.4985

    Article  Google Scholar 

  • Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloids Surf B: Biointerfaces 2(6):517–566. doi:10.1016/0927-7765(94)80066-9

    Article  Google Scholar 

  • Henzler K, Haupt B, Lauterbach K, Wittemann A, Borisov O, Ballauff M (2010) Adsorption of β-lactoglobulin on spherical polyelectrolyte brushes: direct proof of counterion release by isothermal titration calorimetry. J Am Chem Soc 132(9):3159–3163. doi:10.1021/ja909938c

    Article  Google Scholar 

  • Herman D, Walz JY (2013) Stabilization of weakly charged microparticles using highly charged nanoparticles. Langmuir 29(20):5982–5994. doi:10.1021/la400699g

    Article  Google Scholar 

  • Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica: John Willey & Sons, New York

  • ISO 13321 (1996) Particle size analysis: photon correlation spectroscopy. International Standard, Beuth-Verlag, Berlin

  • Israelachvili JN, Adams GE (1978) Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J Chem Soc Faraday Trans 1: Phys Chem Condensed Phases 74:975–1001. doi:10.1039/F19787400975

    Article  Google Scholar 

  • Kondo A, Murakami F, Higashitani K (1992) Circular dichroism studies on conformational changes in protein molecules upon adsorption on ultrafine polystyrene particles. Biotechnol Bioeng 40(8):889–894. doi:10.1002/bit.260400804

    Article  Google Scholar 

  • Krieger IM, Eguiluz M (1976) The second electroviscous effect in polymer latices. Trans Soc Rheol 20(1):29–45. doi:10.1122/1.549428

    Article  Google Scholar 

  • Kroon M, Wegdam GH, Sprik R (1996) Dynamic light scattering studies on the sol–gel transition of a suspension of anisotropic colloidal particles. Phys Rev E 54(6):6541–6550. doi:10.1103/PhysRevE.54.6541

    Article  Google Scholar 

  • Kumar S, Aswal VK, Kohlbrecher J (2011) SANS and UV–vis spectroscopy studies of resultant structure from lysozyme adsorption on silica nanoparticles. Langmuir 27(16):10167–10173. doi:10.1021/la201291k

    Article  Google Scholar 

  • Larsericsdotter H, Oscarsson S, Buijs J (2001) Thermodynamic analysis of proteins adsorbed on silica particles: electrostatic effects. J Colloid Interface Sci 237(1):98–103. doi:10.1006/jcis.2001.7485

    Article  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47. doi:10.1016/S1748-0132(08)70014-8

    Article  Google Scholar 

  • Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, New York

  • Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91(3):233–244. doi:10.1016/S1389-1723(01)80127-4

    Article  Google Scholar 

  • Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557. doi:10.1038/Nmat2442

    Article  Google Scholar 

  • Norde W (2003) Colloids and interfaces in life sciences. Marcel Dekker, Inc, New York

  • Paik U, Kim JY, Hackley VA (2005) Rheological and electrokinetic behavior associated with concentrated nanosize silica hydrosols. Mater Chem Phys 91(1):205–211. doi:10.1016/j.matchemphys.2004.11.011

    Article  Google Scholar 

  • Peschel G, Belouschek P, Müller MM, Müller MR, König R (1982) The interaction of solid surfaces in aqueous systems. Colloid Polym Sci 260(4):444–451. doi:10.1007/BF01448150

    Article  Google Scholar 

  • Quemada D, Berli C (2002) Energy of interaction in colloids and its implications in rheological modeling. Adv Colloid Interf Sci 98(1):51–85. doi:10.1016/S0001-8686(01)00093-8

    Article  Google Scholar 

  • Raghavan SR, Walls HJ, Khan SA (2000) Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir 16(21):7920–7930. doi:10.1021/La991548q

    Article  Google Scholar 

  • Reference Manual, Malvern Instruments (2007) Sample Dispersion and Refractive Index Guide. Malvern Instruments Ltd., Worcestershire

  • Rubio-Hernández FJ, Ayúcar-Rubio MF, Velázquez-Navarro JF, Galindo-Rosales FJ (2006) Intrinsic viscosity of SiO2, Al2O3 and TiO2 aqueous suspensions. J Colloid Interface Sci 298(2):967–972. doi:10.1016/j.jcis.2006.01.009

    Article  Google Scholar 

  • Ruzicka B, Zulian L, Ruocco G (2004) Routes to gelation in a clay suspension. Phys Rev Lett 93(25):258301. doi:10.1103/Physrevlett.93.258301

    Article  Google Scholar 

  • Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11:26. doi:10.1186/1477-3155-11-26

    Article  Google Scholar 

  • Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS (2009) Cytochrome C on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity. Small 5(4):470–476. doi:10.1002/smll.200800995

    Article  Google Scholar 

  • Tadros TF (1996) Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Adv Colloid Interf Sci 68:97–200. doi:10.1016/S0001-8686(96)90047-0

    Article  Google Scholar 

  • Technical Bulletin 11, Company publication (1967) Basic characteristics of aerosil fumed silica. Evonik Industries AG, Hanau

  • Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20(16):6800–6807. doi:10.1021/la0497200

    Article  Google Scholar 

  • Vigil G, Xu Z, Steinberg S, Israelachvili J (1994) Interactions of silica surfaces. J Colloid Interface Sci 165(2):367–385. doi:10.1006/jcis.1994.1242

    Article  Google Scholar 

  • Wu X, Narsimhan G (2008) Effect of surface concentration on secondary and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles. Biochim Biophys Acta (BBA) Proteins Proteomics 1784(11):1694–1701. doi:10.1016/j.bbapap.2008.06.008

    Article  Google Scholar 

  • Zittle CA (1956) Solubility transformation of alpha-lactalbumin. Arch Biochem Biophys 64(1):144–151. doi:10.1016/0003-9861(56)90250-8

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the US Army Research Office under the Multi-University Research Initiative (MURI) grant no. W911NF-08-1-0171 and Whistler Center for Carbohydrate Research.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo H. Campanella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eren, N.M., Jones, O.G. & Campanella, O.H. Changes in the rheology of nano-structured suspensions by adsorption of the protein α-lactalbumin on the surface of silica particles. Rheol Acta 54, 735–744 (2015). https://doi.org/10.1007/s00397-015-0857-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0857-8

Keywords

Navigation