Skip to main content
Log in

Critical quantities on the yielding process of waxy crude oils

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The yielding behavior of waxy crude oils below the gelation temperature is a fundamental aspect for the production in oil basins located in deep water. Under this state, the material exhibits a diversity of complex non-Newtonian features turning the determination of its rheology a challenging task. We performed different tests monitoring the critical stress and strain where a major rupture occurs. We could infer from these experiments a minimum critical stress value that can be associated to the static yield stress of the material. In addition, the material exhibited a remarkably constant critical strain value, turning this last parameter into a more representative fingerprint of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Astarita G (1990) The engineering reality of the yield stress. J Rheol 34 (2):275–277

    Article  Google Scholar 

  • Balmforth NJ, Frigaard I, Ovarlez G (2014) Yielding to stress: Recent developments in viscoplastic fluid mechanics. Ann Rev Fluid Mech 46:45–64

    Article  Google Scholar 

  • Barnes HA (1999) The yield stress—a review. J Non-Newt Fluid Mech 81:133–178

    Article  Google Scholar 

  • Barnes HA, Walters K (1985) The yield stress myth?. Rheol Acta 24:323–326

    Article  Google Scholar 

  • Chang C, Nguyen QD, Bogger DV (1998) The yielding of waxy crude oils. Ind Eng Chem Res 37:1551–1559

    Article  Google Scholar 

  • Coussot P (2014) Yield stress fluid flows: a review of experimental data. J Non-Newt Fluid Mech 211:31–49

    Article  Google Scholar 

  • Coussot P, Nguyen QD, Huynh HT, Bonn D (2002) Viscosity bifurcation in thixotropic, yielding fluids. J Rheol 46:573–589

    Article  Google Scholar 

  • de Souza Mendes PR, Thompson RL (2013) A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids. Rheol Acta 58:1630–1640

    Google Scholar 

  • de Souza Mendes PR, Thompson RL (2012) A critical o verview of elasto-viscoplastic thixotropic modeling. J Non-Newt Fluid Mech 187–188:8–15

    Article  Google Scholar 

  • Dimitriou CJ, McKinley GH (2014) A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid. Soft Matter 10 (35):6619–6644

    Article  Google Scholar 

  • Dimitriou CJ, McKinley GH, Venkatesan R (2011) Rheo-PIV analysis of the yielding and flow of model waxy crude oils. Energy & Fuels 25:3040–3052

    Article  Google Scholar 

  • Evans ID (1992) On the nature of the yield stress. J Rheol 36 (7):1313–1316

    Article  Google Scholar 

  • Fall A, Paredes J, Bonn D (2010) Yielding and shear banding in soft glassy materials. Phys Rev Letters 105:225502–1–225502–4

    Article  Google Scholar 

  • Hou L (2012) Experimental study on yield behavior of Daqing crude oil. Rheol Acta 51:603–607

    Article  Google Scholar 

  • Letoffe JM, Claudy P, Kok MV, Garcin M, Volle JL (1995) Crude oils: characterization of waxes precipitated on cooling by DSC and thermomicroscopy. Fuel 74 (6):810–817

    Article  Google Scholar 

  • Marchesini FH, Alexandra AA, de Souza Mendes PR, Ziglio CM (2012) Rheological characterization of waxy crude oils: Sample preparation. Energy & Fuels 26:1038–1048

    Article  Google Scholar 

  • Moller P, Fall A, Chikkadi V, Derks D, Bonn D (2009) An attempt to categorize yield stress fluid behavior. Phil Trans Royal Soc 367:5139–5155

    Article  Google Scholar 

  • Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2:274–283

    Article  Google Scholar 

  • Mujumdar A, Beris AN, Metzner AB (2002) Transient phenomena in thixotropic systems. J Non-Newtonian Fluid Mech 102:157–178

    Article  Google Scholar 

  • Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47:283–300

    Article  Google Scholar 

  • Schurz J (1990) The yield stress—an empirical reality. Rheol Acta 29:170–171

    Article  Google Scholar 

  • Soares EJ, Thompson RL, Machado A (2013) Measuring the yielding of waxy crude oils considering its time-dependency and apparent-yield-stress nature. Appl Rheol 23:62798–1–62798–11

    Google Scholar 

  • Visitin RFG, Lapasin R, Vignati E, D’Antona P, Lockhart TP (2005) Rheological behavior and structural interpretation of waxy crude oil gels. Langmuir 21:6240–6249

    Article  Google Scholar 

  • Wardhaugh LT, Boger DV (1991) The measurement and description of the yielding behavior of waxy crude oil. J Rheol 35:8123–8133

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially funded by grants from CNPq (Conselho Nacional de Pesquisa e Desenvolvimento), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), ANP (Agência Nacional de Petróleo) and PETROBRAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson J. Soares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarcha, B.A., P. Forte, B.P., Soares, E.J. et al. Critical quantities on the yielding process of waxy crude oils. Rheol Acta 54, 479–499 (2015). https://doi.org/10.1007/s00397-015-0835-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0835-1

Keywords

Navigation