Skip to main content
Log in

Flow-induced crystallization of polypropylenes in capillary flow

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this paper, the flow-induced crystallization (FIC) behavior of various polypropylenes with different molecular characteristics was investigated using a capillary rheometer. The Cogswell analysis was applied on the capillary data to obtain the apparent extensional strain rate and strain as well as the apparent extensional viscosity. The extensional viscosity obtained using this method was in good agreement with the zero shear viscosity obtained using a cone-and-plate rotational rheometer (Anton Paar MCR-502). Extensional flow parameters did not influence crystallization kinetics in the capillary die. FIC was found to depend strongly on the length-to-diameter (L/D) ratio of the capillary die that is directly related to the residence time. It was also found that the crystallization kinetics were enhanced with increasing molecular weight, indicating the importance of high-end tail of molecular weight distribution (MWD) on FIC. Finally, temperature impacted the FIC behavior significantly since it alters the activation energy needed for the formation of macroscopic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Acierno S, Palomba B, Winter HH, Grizzuti N (2003) Effect of molecular weight on the flow-induced crystallization of isotactic poly(1-butene). Rheol Acta 42(3):243–250

    Google Scholar 

  • Baert J, Van Puyvelde P (2006) Effect of molecular and processing parameters on the flow-induced crystallization of poly-1-butene. Part 1: kinetics and morphology. Polymer 47(16):5871–5879

    Article  Google Scholar 

  • Bair SS (2007) High pressure rheology for quantitative elastohydrodynamics, vol. 54. Elsevier

  • Barus C (1891) Note on the dependence of viscosity on pressure and temperature. Proc Am Acad Arts Sci 13–18

  • Binding DM, Couch MA, Walters K (1998) The pressure dependence of the shear and elongational properties of polymer melts. J Non-Newtonian Fluid Mech 79(2):137–155

    Article  Google Scholar 

  • Chellamuthu M, Arora D, Winter HH, Rothstein JP (2011) Extensional flow-induced crystallization of isotactic poly-1-butene using a filament stretching rheometer. J Rheol 55:901–920

    Article  Google Scholar 

  • Cogswell FN (1972) Converging flow of polymer melts in extrusion dies. Polym Eng Sci 12(1):64–73

    Article  Google Scholar 

  • Cogswell FN (1978) Converging flow and stretching flow: a compilation. J Non-Newtonian Fluid Mech 4(1):23–38

    Article  Google Scholar 

  • Cogswell FN (1981) Polymer melt rheology—a guide to industrial practice. John Wiley & Sons

  • Crater DH, Cuculo JA, Boudreaux E (1980) Flow‐induced crystallization of polymer melts in convergent flow regimes and imposed temperature gradient to form ultra‐oriented fiber structures. Polym Eng Sci 20(5):324–329

    Article  Google Scholar 

  • Crowley DG, Frank FC, Mackley MR, Stephenson RG (1976) Localized flow birefringence of polyethylene oxide solutions in a four roll mill. J Polym Sci Polym Phys 14:1111–1119

    Article  Google Scholar 

  • Dai SC, Qi F, Tanner RI (2006) Strain and strain‐rate formulation for flow‐induced crystallization. Polym Eng Sci 46(5):659–669

    Article  Google Scholar 

  • Dealy JM, Wang J (2013) Melt rheology and its applications in plastics industry, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Derakhshandeh M, Hatzikiriakos SG (2012) Flow-induced crystallization of high-density polyethylene: the effects of shear and uniaxial extension. Rheol Acta 51(4):315–327

    Article  Google Scholar 

  • Derakhshandeh M, Doufas AK, Hatzikiriakos SG (2014a) Quiescent and shear-induced crystallization of polypropylenes. Rheol Acta 1–17

  • Derakhshandeh M, Mozaffari G, Doufas AK, Hatzikiriakos SG (2014b) Quiescent crystallization of polypropylene: experiments and modeling. J Polym Sci Part B: Polym Phys 52(19):1259–1275

    Article  Google Scholar 

  • Deshpande AP, Krishnan JM, Kumar S (2010) Rheology of complex fluids. Springer, New York

    Google Scholar 

  • Duplay C, Monasse B, Haudin JM, Costa JL (2000) Shear-induced crystallization of polypropylene: influence of molecular weight. J Mater Sci 35(24):6093–6103

    Article  Google Scholar 

  • Doufas AK, McHugh AJ, Miller C, Immaneni A (2000) Simulation of melt spinning including flow-induced crystallization: Part II. Quantitative comparisons with industrial spinline data. J Non-Newtonian Fluid Mech 92(1):81–103

  • Doufas AK, McHugh AJ (2001) Simulation of melt spinning including flow-induced crystallization. Part III. Quantitative comparisons with PET spinline data. J Rheol 45(2):403–420

  • Doufas AK, Rice L, Thurston W (2011) Shear and extensional rheology of polypropylene melts: Experimental and modeling studies. J Rheol 55(1):95–126

  • Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Crystallization processes in quiescent and moving polymer melts under heat transfer conditions. Prog Polym Sci 15(4):629–714

    Article  Google Scholar 

  • Eder G, Janeschitz-Kriegl H, Meijer HEH (eds) (1998) Materials science and technology. Wiley, Weinheim, 18: Chapter 5

    Google Scholar 

  • Elmoumni A, Winter HH (2006) Large strain requirements for shear-induced crystallization of isotactic polypropylene. Rheol Acta 45(6):793–801

    Article  Google Scholar 

  • Everage AE Jr, Ballman RL (1974) A mechanism for polymer melt or solution fracture. J Appl Polym Sci 18(3):933–937

    Article  Google Scholar 

  • Farah M, Bretas RE (2004) Characterization of i‐PP shear‐induced crystallization layers developed in a slit die. J Appl Polym Sci 91(6):3528–3541

    Article  Google Scholar 

  • Gelfer Y, Winter HH (1999) Effect of branch distribution on rheology of LLDPE during early stages of crystallizatihon. Macromolecules 32(26):8974–8981

    Article  Google Scholar 

  • Hadinata C, Gabriel C, Ruellmann M, Kao N, Laun HM (2006) Shear-induced crystallization of PB-1 up to processing-relevant shear rates. Rheol Acta 45(5):539–546

    Article  Google Scholar 

  • Hadinata C, Boos D, Gabriel C, Wassner E, Rüllmann M, Kao N, Laun M (2007) Elongation-induced crystallization of a high molecular weight isotactic polybutene-1 melt compared to shear-induced crystallization. J Rheol 51(2):195–215

    Article  Google Scholar 

  • Hassell DG, Mackley MR (2008) Localised flow-induced crystallisation of a polyethylene melt. Rheol Acta 47(4):435–446

    Article  Google Scholar 

  • Hatzikiriakos SG (2012) Wall slip of molten polymers. Prog Polym Sci 37:624–643

    Article  Google Scholar 

  • Housmans JW, Steenbakkers RJ, Roozemond PC, Peters GW, Meijer HE (2009) Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene. Macromolecules 42(15):5728–5740

    Article  Google Scholar 

  • Ishizuka O, Koyama K (1997) Crystallization of running filament in melt spinning of polypropylene. Polymer 18:913–918

    Article  Google Scholar 

  • Janeschitz-Kriegl H (2003) How to understand nucleation in crystallizing polymer melts under real processing conditions. Colloid Polym Sci 281(12):1157–1171

    Article  Google Scholar 

  • Kazatchkov IB, Hatzikiriakos SG, Stewart CW (1995) Extrudate distortion in the capillary/slit extrusion of a molten polypropylene. Polym Eng Sci 35(1):1864–1871

    Article  Google Scholar 

  • Keller A (1968) Polymer crystals. Rep Prog Phys 31:623–704

    Article  Google Scholar 

  • Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield JA (2007) Molecular basis of the shish-kebab morphology in polymer crystallization. Science 316(5827):1014–1017

    Article  Google Scholar 

  • Kitoko V, Keentok M, Tanner RI (2003) Study of shear and elongational flow of solidifying polypropylene melt for low deformation rates. Korea-Australia Rheol J 15:63–73

    Google Scholar 

  • Kornfield JA, Kumaraswamy G, Issaian AM (2002) Recent advances in understanding flow effects on polymer crystallization. Ind Eng Chem Res 41(25):6383–6392

    Article  Google Scholar 

  • Kumaraswamy G, Issaian AM, Kornfield JA (1999) Shear-enhanced crystallization in isotactic polypropylene. 1. Correspondence between in situ rheo-optics and ex situ structure determination. Macromolecules 32(22):7537–7547

    Article  Google Scholar 

  • Ledbetter M, Cuculo J, Tucker P (1984) Structure and properties of poly(ethylene terephthalate) crystallized by converging flow and high pressure. J Polym Sci Polym Chem Ed 22(6):1435–1459

    Article  Google Scholar 

  • Liedauer S, Eder G, Janeschitz-Kriegl H, Jerschow P, Geymayer W, Ingolic E (1993) On the kinetics of shear induced crystallization in polypropylene. Int Polym Process 8(3):236–244

    Article  Google Scholar 

  • Mackay ME, Dajan AM, Wippel H, Janeschitz‐Kriegl H, Lipp M (1995) An approximate technique to determine elongation stresses in stagnation flow. J Rheol 39(1):1–14

    Article  Google Scholar 

  • Mackley MR, Frank FC, Keller A (1975) Flow-induced crystallization of polyethylene melts. J Mater Sci 10(9):1501–1509

    Article  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley-VCH; 1 edition

  • Magill JH (1964) Crystallization of poly‐(tetramethyl‐p‐silphenylene)‐siloxane polymers. J Appl Phys 35(11):3249–3259

    Article  Google Scholar 

  • Magill JH (1967) Crystallization of poly (tetramethyl‐p‐silphenylene)‐siloxane (TMPS) polymers. Part II. J Poly Sci Part A-2: Polym Phys 5(1):89–99

    Article  Google Scholar 

  • Magill JH (1969) Spherulitic crystallization studies of poly (tetramethyl‐p‐silphenylene)-siloxane (TMPS). Part III. J Polym Sci Part A-2: Polym Phys 7(7):1187–1195

    Article  Google Scholar 

  • McHugh AJ, Guy RK, Tree DA (1993) Extensional flow-induced crystallization of a polyethylene melt. Colloid Polym Sci 271(7):629–645

    Article  Google Scholar 

  • Metzner AB, Metzner AP (1970) Stress levels in rapid extensional flows of polymeric fluids. Rheol Acta 9(2):174–181

    Article  Google Scholar 

  • Mitsoulis E, Hatzikiriakos SG, Christodoulou K, Vlassopoulos D (1998) Sensitivity analysis of the Bagley correction to shear and extensional rheology. Rheol Acta 37:438–448

    Article  Google Scholar 

  • Mitsoulis E, Kazatchkov IB, Hatzikiriakos SG (2005) The effect of slip in the flow of a branched PP melt: experiments and simulations. Rheol Acta 44(4):418–426

    Article  Google Scholar 

  • Nakamura N, Watanabe T, Katayama K, Amano T (1972) Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J App Polym Sci 16:1077–1091

    Article  Google Scholar 

  • Ness JN, Liang JZ (1993) A study of rheological properties and crystallization behavior for HDPE melts during extrusion. J Appl Polym Sci 48(3):557–561

    Article  Google Scholar 

  • Padmanabhan M, CW, Padmanabhan M (1997) Extensional viscosity from entrance pressure drop measurements. Rheol Acta 36(2):144–151

  • Paradkar RP, Patel RM, Knickerbocker E, Doufas AK (2008) Raman spectroscopy for spinline crystallinity measurements. I. Experimental studies. J Appl Polym Sci 109(5):3413–3420

    Article  Google Scholar 

  • Patel RM, Doufas AK, Paradkar RP (2008) Raman spectroscopy for spinline crystallinity measurements. II. Validation of fundamental fiber‐spinning models. J Appl Polym Sci 109(5):3398–3412

    Article  Google Scholar 

  • Phan-Thien N (2002) Understanding viscoelasticity: basics of rheology. Springer

  • Rosenbaum EE, Hatzikiriakos SG (1997) Wall slip in the capillary flow of molten polymers subject to viscous heating. AIChE J 43(3):598–608

    Article  Google Scholar 

  • Rothstein JP, McKinley GH (1999) Extensional flow of a polystyrene boger fluid through a 4:1:4 axisymmetric contraction/expansion. J Non-Newtonian Fluid Mech 86:61–88

    Article  Google Scholar 

  • Scelsi L, Mackley MR (2008) Rheo-optic flow-induced crystallisation of polypropylene and polyethylene within confined entry–exit flow geometries. Rheol Acta 47(8):895–908

    Article  Google Scholar 

  • Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43:657–669

    Article  Google Scholar 

  • Southern JH, Porter RS (1970) The properties of polyethylene crystallized under the orientation and pressure effects of a pressure capillary viscometer. J Appl Polym Sci 14(9):2305–2317

    Article  Google Scholar 

  • Spruiell JE, White JL (1975) Structure development during polymer processing: studies of the melt spinning of polyethylene and polypropylene fibers. Polym Eng Sci 15:660–667

    Article  Google Scholar 

  • Stadlbauer M, Janeschitz-Kriegl H, Eder G, Ratajski E (2004) New extensional rheometer for creep flow at high tensile stress. Part II. Flow induced nucleation for the crystallization of iPP. J Rheol 48:631–639

    Article  Google Scholar 

  • Sun T, Brant P, Chance RR, Graessley WW (2001) Effect of short chain branching on the coil dimensions of polyolefins in dilute solution. Macromolecules 34(19):6812–6820

    Article  Google Scholar 

  • Swartjes FHM, Peters GW, Rastogi S, Meijer HE (2003) Stress induced crystallization in elongational flow. Int Polym Process 18(1):53–66

    Article  Google Scholar 

  • Tan V, Gogos CG (1976) Flow‐induced crystallization of linear polyethylene above its normal melting point. Polym Eng Sci 16(7):512–525

    Article  Google Scholar 

  • Tanner RI, Qi F (2005) A comparison of some models for describing polymer crystallization at low deformation rates. J Non-Newtonian Fluid Mech 127(2):131–141

    Article  Google Scholar 

  • Tanner RI, Qi F (2009) Stretching, shearing and solidification. Chem Eng Sci 64(22):4576–4579

    Article  Google Scholar 

  • Tiang JS, Dealy JM (2012) Shear‐induced crystallization of isotactic polypropylene studied by simultaneous light intensity and rheological measurements. Polym Eng Sci 52(4):835–848

    Article  Google Scholar 

  • Titomanlio G, Marrucci G (1990) Capillary experiments of flow induced crystallization of HDPE. AIChE J 36(1):13–18

    Article  Google Scholar 

  • Van Antwerpen F, Van Krevelen DW (1972) Influence of crystallization temperature, molecular weight, and additives on the crystallization kinetics of poly (ethylene terephthalate). J Polym Sci Polym Phys Ed 10(12):2423–2435

    Google Scholar 

  • Van Meerveld J, Peters GW, Hütter M (2004) Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheol Acta 44(2):119–134

    Article  Google Scholar 

  • White EEB, Winter HH, Rothstein JP (2012) Extensional-flow-induced crystallization of isotactic polypropylene. Rheol Acta 51(4):303–314

    Article  Google Scholar 

  • Ziabicki A (1967) Kinetics of polymer crystallization and molecular orientation in the course of melt spinning. Appl Polym Symp 6:1–18

    Google Scholar 

Download references

Acknowledgments

Financial assistance from the Natural Sciences and Engineering Research Council (NSERC) of Canada, the scholarship program of the University of British Columbia (4YF), and the ExxonMobil Chemical Company are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas G. Hatzikiriakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derakhshandeh, M., Jazrawi, B., Hatzikiriakos, G. et al. Flow-induced crystallization of polypropylenes in capillary flow. Rheol Acta 54, 207–221 (2015). https://doi.org/10.1007/s00397-014-0829-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-014-0829-4

Keywords

Navigation