Skip to main content
Log in

Experimental study on the capillary thinning of entangled polymer solutions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The transient elongation behavior of entangled polymer and wormlike micelles (WLM) solutions has been investigated using capillary breakup extensional rheometry (CaBER). The transient force ratio X = 0.713 reveals the existence of an intermediate Newtonian thinning region for polystyrene and WLM solutions prior to the viscoelastic thinning. The exponential decay of X(t) in the first period of thinning defines an elongational relaxation time λ x which is equal to elongational relaxation time λ e obtained from exponential diameter decay D(t) indicating that the initial stress decay is controlled by the same molecular relaxation process as the strain hardening observed in the terminal regime of filament thinning. Deviations in true and apparent elongational viscosity are discussed in terms of X(t). A minimum Trouton ratio is observed which decreases exponentially with increasing polymer concentration leveling off at Trmin = 3 for the solutions exhibiting intermediate Newtonian thinning and Trmin ≈ 10 otherwise. The relaxation time ratio λ e/ λ s, where λ s is the terminal shear relaxation time, decreases exponentially with increasing polymer concentration and the data for all investigated solutions collapse onto a master curve irrespective of polymer molecular weight or solvent viscosity when plotted versus the reduced concentration c[ η], with [ η] being the intrinsic viscosity. This confirms the strong effect of the nonlinear deformation in CaBER experiments on entangled polymer solutions as suggested earlier. On the other hand, λ eλ s is found for all WLM solutions clearly indicating that these nonlinear deformations do not affect the capillary thinning process of these living polymer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ameri David RL, Wei MH, Kornfield JA (2009) Effects of pairwise, donor–acceptor functional groups on polymer solubility, solution viscosity and mist control. Polymer 50 (26):6323–6330

    Article  Google Scholar 

  • Anna SL, McKinley GH (2001a) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45:115–138

    Article  Google Scholar 

  • Anna SL, McKinley GH, Nguyen DA, Sridhar T, Muller SJ, Huang J, James DF (2001b) An inter-laboratory comparison of measurements from filament stretching rheometers using common test fluids. J Rheol 45:83–114

    Article  Google Scholar 

  • Anna SL, Rogers C, McKinley GH (1999) On controlling the kinematics of a filament stretching rheometer using a real-time active control mechanism. J Non-Newton Fluid Mech 87:307–335

    Article  Google Scholar 

  • Arnolds O, Buggisch H, Sachsenheimer D, Willenbacher N (2010) Capillary breakup extensional rheometry (CaBER) on semi-dilute and concentrated polyethylene oxide (PEO) solutions. Rheol Acta 49:1207–1217

    Article  Google Scholar 

  • Arratia PE, Cramer LA, Gollub JP, Durian DJ (2009) The effects of polymer molecular weight on filament thinning and drop breakup in microchannels. New Jour of Phys 11:115–006

    Google Scholar 

  • Bach A, Rasmussen HK, Hassager O (2003) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47 (2):429–441

    Article  Google Scholar 

  • Bazilevskii AV, Entov VM et al (1997) Failure of polymer solution filaments. Polym Sci A 39:316–324

    Google Scholar 

  • Bazilevsky AV, Entov VM, Rozhkov AN (1990) Liquid filament microrheometer and some of its applications. In: Oliver DR (ed) conference, Third European rheology. Elsevier, San Diego, pp 41–43

    Google Scholar 

  • Bazilevsky AV, Entov VM, Rozhkov AN (2001) Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym Sci Ser A 43:716–726

    Google Scholar 

  • Becerra M, Carvalho MS (2011) Stability of viscoelastic liquid curtain. Eng and Proc 50:445–449

    Article  Google Scholar 

  • Berret JF, Appell J, Porte G (1993) Linear rheology of entangled wormlike micelles. Langmuir 9:2851–2854

    Article  Google Scholar 

  • Bhardwaj A, Miller E, Rothstein JP (2007a) Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic wormlike micelle solutions. J Rheol 51:693–719

    Article  Google Scholar 

  • Bhardwaj A, Richter D, Chellamuthu M, Rothstein JP (2007b) The effect of preshear on the extensional rheology of wormlike micelle solutions. Rheol Acta 46:861–875

    Article  Google Scholar 

  • Bischoff White EE, Chellamuthu M, Rothstein JP (2010) Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol Acta 49:119–129

    Article  Google Scholar 

  • Böhme G (2000) Strömungsmechanik nichtnewtonischer Fluide. Teuber, Stuttgart

    Book  Google Scholar 

  • Brenner M, Lister J, Stone H (1996) Pinching threads, singularities and the number 0.0304. Phys Fluids 8:2827–2836

    Article  Google Scholar 

  • Campo-Deaño L, Clasen C (2010) The slow retraction method (SRM) for the determination of ultra-sort relaxation times in capillary breakup extensional rheometry experiments. J Non-Newton Fluid Mech 165:1688–1699

    Article  Google Scholar 

  • Cates ME (1987) Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20:2289–2296

    Article  Google Scholar 

  • Cates ME (1988) Dynamics of living polymers and flexible surfactant micelles: scaling laws for dilution. J Phys France 49 (9):1593–1600

    Article  Google Scholar 

  • Cates ME (1996) Dynamics of living polymers and flexible surfactant micelles: scaling laws for dilution. J Phys France 49 (9):1593–1600

  • Chellamuthu M, Rothstein JP (2008) Distinguishing between linear and branched wormlike micelle solutions using extensional rheology measurements. J Rheol 52:865–884

    Article  Google Scholar 

  • Chen L, Bromberg L, Hatton TA, Rutledge GC (2008). Electrospun cellulose acetate fibers containing chlorhexidine as a bactericide 49 (5):1266–1275

    Google Scholar 

  • Christanti Y, Walker LM (2001) Surface tension driven jet break up of strain-hardening polymer solutions. J Non-Newtonian Fluid Mech 100:9–26

    Article  Google Scholar 

  • Christanti Y, Walker LM (2002) Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance. J Rheol 46:733–748

    Article  Google Scholar 

  • Clasen C, Eggers J, Fontelos MA, Li J, McKinley GH (2006a) The beads on-string structure of viscoelastic threads. J Fluid Mech 556:283–308

    Article  Google Scholar 

  • Clasen C, Plog JP, et al. (2006b) How dilute are dilute solutions in extensional flows J Rheol 50:849–881

    Article  Google Scholar 

  • Clasen C (2010) Capillary breakup extensional rheometry of semi-dilute polymer solutions. K-A Rheol J 22:331–338

    Google Scholar 

  • Cromer M, Cook PL, McKinley GH (2009) Extensional flow of wormlike micellar solutions. Chem Eng Science 64:4588–4596

    Article  Google Scholar 

  • Eggers J (1993) Universal pinching of 3D axisymmetric free-surface flows. Phys Rev Lett 71:3458–3490

    Article  Google Scholar 

  • Eggers J (1997) Nonlinear dynamics and breakup of free-surface fows. Rev Mod Phys 69:865–930

  • Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newton Fluid Mech 72:31–53

    Article  Google Scholar 

  • Erni P, Varagnat M, Clasen C, Crest J, McKinley GH (2011) Microrheometry of sub-nanolitre biopolymer samples: non-Newtonian flow phenomena of carnivorous plant mucilage. Soft Matter 7:10889–10898

    Article  Google Scholar 

  • Germann N, Cook LP, Beris AN (2013) Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions. J Non-Newton Fluid Mech 196:51–57

    Article  Google Scholar 

  • Gier S, Wagner C (2012) Visualization of the flow profile inside a thinning filament during capillary breakup of a polymer solution via particle image velocimetry and particle tracking velocimetry. Phys Fluids 24:053–102

    Article  Google Scholar 

  • Haward SJ, McKinley GH (2012b) Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: Effects of surfactant concentration and ionic environment. Phys Rev E 85:031–502

    Article  Google Scholar 

  • Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13 (5):1688–1699

    Article  Google Scholar 

  • Kheirandish S, Gubaydullin I, Willenbacher N (2008) Shear and elongational flow behaviour of acrylic thickener solutions. Part I: effect of intermolecular aggregation. Rheol Acta 49:397–407

    Google Scholar 

  • Kheirandish S, Guybaidullin I et al (2009) Shear and elongational flow behavior of acrylic thickener solutions, Part II: effect of gel content. Rheol Acta 48:397–407

    Article  Google Scholar 

  • Kim NJ, Pipe CJ, Ahn KH, Lee SJ, McKinley GH (2010) Capillary breakup extensional rheometry of a wormlike micellar solution. Korea-Aust Rheol J 22:31–41

    Google Scholar 

  • Klein CO, Naue IF et al (2009) Addition of the force measurement capability to a commercially available extensional rheometer (CaBER). Soft Mater 7:242–257

    Article  Google Scholar 

  • Kolte MI, Rasmussen HK, Hassager O (1997) Transient filament stretching rheometer II: numerical simulation. Rheol Acta 36:285–302

    Google Scholar 

  • Kolte MI, Szabo P (1999) Capillary thinning of polymeric filaments. J Rheol 43:609–626

    Article  Google Scholar 

  • Liang RF, Mackley MR (1994) Rheological characterization of the time and strain dependence for polyisobutylene solutions. J Non-Newton Fluid Mech 52:387–405

    Article  Google Scholar 

  • Ma W K A, Chinesta F, Tuladhar T, Mackley MR (2008) Filament stretching of carbon nano tube suspension. Rheol Acta 47:447–457

    Article  Google Scholar 

  • Martinie L, Buggisch H, Willenbacher N (2013) Apparent elongational yield stress of soft matter. J Rheol 57:627–646

    Article  Google Scholar 

  • McKinley GH (2005) Visco-elasto-capillary thinning and breakup of complex fluid. Rheology Reviews 2005. The British Soc Rheol:1–49

  • McKinley GH, Brauner O, Yao M (2001) Kinematics of filament stretching in dilute and concentrated polymer solutions. Korea-Australia Rheol J 13 (1):29–35

    Google Scholar 

  • McKinley GH, Sridhar T (2002) Filament stretching rheometry. Annu Rev Fluid Mech 34:375–415

    Article  Google Scholar 

  • McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44 (3):653–670

    Article  Google Scholar 

  • Miller E, Cooper-White J (2009) The effects of chain conformation in the microfluidic entry flow of polymer-surfactant systems. Non-Newtonian Fluid Mech 160:22–30

    Article  Google Scholar 

  • Münstedt H (1975) Viscoelasticity of polystyrene melts in tensile creep experiments. Rheol Acta 14:1077–1088

    Article  Google Scholar 

  • Münstedt H (1979) New universal extensional rheometer for polymer melts. J Rheol 23:421–436

    Article  Google Scholar 

  • Münstedt H, Kurzbeck S, Egersdörfer L (1998) Influence of molecular structure on rheological properties of polyethylenes Part II. Elongational behavior. Rheol Acta 37:21–29

    Article  Google Scholar 

  • Nelson WC, Kavehpour HP, Kim CJ (2011) A miniature capillary breakup extensional rheometer by electrostatically assisted generation of liquid filaments. Lab Chip 11:2424–2431

    Article  Google Scholar 

  • Niedzwiedz K, Arnolds O, Willenbacher N, Brummer R (2009) How to characterize yield stress fluids with capillary breakup extensional rheometry (CaBER). Appl Rheol 19:41969–1–41969–10

    Google Scholar 

  • Niedzwiedz K, Buggisch H, Willenbacher N (2010) Extensional rheology of concentrated emulsions as probed by capillary breakup elongational rheometry (CaBER). Rheol Acta 49:1103– 1116

    Article  Google Scholar 

  • Oliveira M S N, Yeh R, McKinley GH (2006) Iterated stretching, extensional rheology and formation of beads-on-string structures in polymer solutions. J Non-Newton Fluid Mech 137:137–148

    Article  Google Scholar 

  • Orr NV, Sridhar T (1999) Probing the dynamics of polymer solutions in extensional flow using step strain rate experiments. J Non-Newton Fluid Mech 82:203–232

    Article  Google Scholar 

  • Papageorgiou DT (1995) On the breakup of viscous liquids threads. Phys Fluids 7:1529–1544

    Article  Google Scholar 

  • Rathfon JM, Cohn RW, Crosby AJ, Rothstein JP, Tew GN (2011) Confinement effects on chain entanglement in free-standing polystyrene ultrathin films. Macromolecules 44 (13):5436–5442

    Article  Google Scholar 

  • Regeva O, Vandebrilb S, Zussmana E, Clasen C (2010) The role of interfacial viscoelasticity in the stabilization of an electrospun jet. Polymer 50 (12):2611–2620

    Article  Google Scholar 

  • Rehage H, Hoffmann H (1988) Rheological Properties of Viscoelastic Surfactant Systems. J Physl Chem 92 (16):4712–4719

    Article  Google Scholar 

  • Renardy M (1994) Some comments on the surface tension driven breakup (or the lack of it) of the viscoelastic jets. J Non-Newton Fluid Mech 51:97–107

    Article  Google Scholar 

  • Renardy M (1995) A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets. J Non-Newton Fluid Mech 59:267–282

    Article  Google Scholar 

  • Rodd LE, Scott TP, Cooper-White JJ, McKinley GH (2005) Capillary breakup rheometry of low-viscosity elastic fluids. Appl Rheol 15 (1):12–27

    Google Scholar 

  • Rothstein JP (2003) Transient extensional rheology of wormlike micelle solutions. J Rheol 47:1227–1247

    Article  Google Scholar 

  • Rothstein JP, McKinley GH (2002a) A comparison of the stress and birefringence growth of dilute, semi-dilute and concentrated polymer solutions in uniaxial extensional flows. J Non-Newton Fluid Mech 108:275–290

    Article  Google Scholar 

  • Rothstein JP, McKinley GH (2002b) Inhomogeneous transient uniaxial extensional rheometry. J Rheol 46:1419–1443

    Article  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford

    Google Scholar 

  • Sachsenheimer D, Hochstein B, Buggisch H, Willenbacher N (2012) Determination of axial forces during the capillary breakup of liquid filaments - the tilted CaBER method. Rheol Acta 51:909–923

    Article  Google Scholar 

  • Sankaran AK, Rothstein JP (2012) Effect of viscoelasticity on liquid transfer during gravure printing. J Non-Newtonian Fluid Mech 175–176:64–75

    Article  Google Scholar 

  • Sattler R, Gier S, Eggers J, Wagner C (2012) The final stages of capillary break-up of polymer solutions. Phys Fluids 24:023– 101

    Article  Google Scholar 

  • Sattler R, Kityk A, Wagner C (2007) Molecular configurations in the droplet detachment process of a complex liquid. Phys Rev E 75:051805–1-051805-6

    Article  Google Scholar 

  • Schümmer P, Tebel K H (1983) A new elongational rheometer for polymer solutions. J Non-Newtonian Fluid Mech 12 (3):331– 347

    Article  Google Scholar 

  • Spiegelberg S, Ables D, McKinley GH (1996) Role of end-effects on measurements of extensional viscosity in viscoelastic polymer solutions with a filament stretching rheometer. J Non-Newt Fluid Mech 64 (2-3):229–267

    Article  Google Scholar 

  • Tan L, Pan J, Wan A (2012) Shear and extensional rheology of polyacrylonitrile solution: effect of ultrahigh molecular weight polyacrylonitrile. Colloid Polym Sci 290:289–295

    Article  Google Scholar 

  • Tembelya M, Vadillo D, Mackley MR, Soucemarianadin A (2012) The matching of a one-dimensional numerical simulation and experiment results for low viscosity Newtonian and non-Newtonian fluids during fast filament stretching and subsequent break-up. J Rheol 56:159–183

    Article  Google Scholar 

  • Tirtaatmadja V, McKinley GH, Cooper-White JJ (2006) Drop formation and breakup of low viscosity elastic fluids: effects of molecular weight and concentration. Phys Fluids 18:043– 101

    Article  Google Scholar 

  • Tirtaatmadja V, Sridhar T (1993) Filament stretching device for measurement of extensional viscosity. J Rheol 36 (3):277–284

    Google Scholar 

  • Tropea C, Yarin AL, Foss JF (2007) Springer handbook of experimental fluid mechanics. Springer, Heidelberg

    Book  Google Scholar 

  • Tuladhar TR, Mackley MR (2008) Filament stretching rheometry and break-up behaviour of low viscosity polymer solutions and ink jets fluids. J Non-Newton Fluid Mech 148:97–108

    Article  Google Scholar 

  • Vadillo D, Mathues W, Clasen C (2012) Microsecond relaxation processes in shear and extensional flows of weakly elastic polymer solutions. Rheol Acta 51:755–769

    Article  Google Scholar 

  • Vadillo DC, Tuladhar TR, Mulji AC et al (2010) Evaluation of ink jet fluid’s performance using the Cambridge Trimaster filament stretch and breakup-device. J Rheol 54 (2):261–282

    Article  Google Scholar 

  • Vasquez PA, McKinley GH, Cooka LP (2007) A network scission model for wormlike micellar solutions I. Model formulation and viscometric flow predictions. J Non-Newtonian Fluid Mech 144:122–139

    Article  Google Scholar 

  • Yang J, Xu Y (2008) Coalescence of two viscoelastic droplets connected by a string. Phys Fluids 20:043101–1-043101-9

    Google Scholar 

  • Yesilata B, Clasen C, McKinley GH (2006) Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions. J Non-Newton Fluid Mech 133:73–90

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sonja Müller, Sebastian Bindgen, and Frank Bossler for their help in sample preparation and performing the experiments.We would like to thank Jonathan Rothstein and Sunil Khandavalli (University of Massachusetts) for the possibility to use the FiSER setup and for all help given. Financial support by German Research Foundation DFG grant WI 3138/13-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Sachsenheimer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachsenheimer, D., Hochstein, B. & Willenbacher, N. Experimental study on the capillary thinning of entangled polymer solutions. Rheol Acta 53, 725–739 (2014). https://doi.org/10.1007/s00397-014-0789-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-014-0789-8

Keywords

Navigation