Skip to main content
Log in

Structural control of the hybrid colloids by cooperative assembly of PS-b-PAA and semiconductor nanoparticles from the solvent aspects

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Well-defined polymer/inorganic nanoparticle (NP) hybrids are of vital importance to the development of nanomaterials with desired optical, electric, magnetic, and many other properties. We demonstrate the efficient incorporation of n-trioctylphosphine oxide (TOPO)-coated CdSe quantum dots (QDs) into polystyrene-b-polyacrylic acid (PS-b-PAA) colloids by a “solution phase self-assembly” approach. Driven by the hydrophobic interactions, the CdSe QDs are homogeneously encapsulated in the hybrid colloids. The sizes of the hybrid colloids with different structures, i.e., simple spherical micelles and big compound micelles, are tuned from 45 to 126 nm by varying the THF content in the cosolvents of THF and DMF, as well as changing the content or addition rate of selective solvent (water). The PS-b-PAA@CdSe QD hybrid colloids, which show brightly green fluorescence, can be endocytosed into biological cells and be released from the cells evolutionally, indicating their potential applications in biological imaging, labeling, and sensing, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985

    Article  CAS  Google Scholar 

  2. Zhang H, Liu Y, Yao D, Yang B (2012) Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures. Chem Soc Rev 41:6066–6088

    Article  CAS  Google Scholar 

  3. Kang YJ, Taton TA (2005) Core/shell gold nanoparticles by self-assembly and crosslinking of micellar, block-copolymer shells. Angew Chem Int Edit 44:409–412

    Article  CAS  Google Scholar 

  4. Wang MF, Kumar S, Lee A, Felorzabihi N, Shen L, Zhao F, Froimowicz P, Scholes GD, Winnik MA (2008) Nanoscale co-organization of quantum dots and conjugated polymers using polymeric micelles as templates. J Am Chem Soc 130:9481–9491

    Article  CAS  Google Scholar 

  5. Wang XJ, Li GP, Chen T, Yang MX, Zhang Z, Wu T, Chen HY (2008) Polymer-encapsulated gold-nanoparticle dimers: facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. Nano Lett 8:2643–2647

    Article  CAS  Google Scholar 

  6. Kamps AC, Sanchez-Gaytan BL, Hickey RJ, Clarke N, Fryd M, Park SJ (2010) Nanoparticle-directed self-assembly of amphiphilic block copolymers. Langmuir 26:14345–14350

    Article  CAS  Google Scholar 

  7. Shibasaki Y, Kim BS, Young AJ, McLoon AL, Ekker SC, Taton TA (2009) Crosslinked, glassy styrenic surfactants stabilize quantum dots against environmental extremes. J Mater Chem 19:6324–6327

    Article  CAS  Google Scholar 

  8. Dong W, Li Y, Niu D, Ma Z, Gu J, Chen Y, Zhao W, Liu X, Liu C, Shi J (2011) Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@au shell nanocomposite for bimodal imaging and photothermal therapy. Adv Mater 23:5392–5397

    Article  CAS  Google Scholar 

  9. McQuade C, Al Zaki A, Desai Y, Vido M, Sakhuja T, Cheng Z, Hickey RJ, Joh D, Park SJ, Kao G, Dorsey JF, Tsourkas A (2015) A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response. Small 11:834–843

    Article  CAS  Google Scholar 

  10. Flamee S, Cirillo M, Abe S, De Nolf K, Gomes R, Aubert T, Hens Z (2013) Fast, high yield, and high solid loading synthesis of metal selenide nanocrystals. Chem Mater 25:2476–2483

    Article  CAS  Google Scholar 

  11. Pazhanivel T, Devarajan VP, Bharathi G, Senthil K, Ganapathy V, Yong K, Nataraj D (2013) Systematic investigation of the structure and photophysical properties of CdSe, CdSe/ZnS QDs and their hybrid with [small beta]-carotene. RSC Adv 3:26116–26126

    Article  CAS  Google Scholar 

  12. Zhang Y, Nie X (2016) Facile synthesis of CdSe quantum dots in a high-boiling two-phase liquid/liquid system. Colloid Surface A 506:378–382

    Article  CAS  Google Scholar 

  13. Nie X, Jiang W (2014) Luminous block copolymer-quantum dots hybrids formed by cooperative assembly in a selective solvent. RSC Adv 4:19613–19621

    Article  CAS  Google Scholar 

  14. Ku KH, Kim MP, Paek K, Shin JM, Chung S, Jang SG, Chae W-S, Yi G-R, Kim BJ (2013) Multicolor emission of hybrid block copolymer–quantum dot microspheres by controlled spatial isolation of quantum dots. Small 9:2667–2672

    Article  CAS  Google Scholar 

  15. Wang MF, Hang MZ, Li J, Kumar S, Walker GC, Scholes GD, Winnik MA (2010) Self-assembly of colloidal quantum dots on the scaffold of triblock copolymer micelles. ACS Appl Mater Interfaces 2:3160–3169

    Article  CAS  Google Scholar 

  16. Wang J, Li W, Zhu J (2014) Encapsulation of inorganic nanoparticles into block copolymer micellar aggregates: strategies and precise localization of nanoparticles. Polymer 55:1079–1096

    Article  CAS  Google Scholar 

  17. Wang H, Chen L, Feng Y, Chen H (2013) Exploiting core–shell synergy for nanosynthesis and mechanistic investigation. Acc Chem Res 46:1636–1646

    Article  CAS  Google Scholar 

  18. Xu J, Han Y, Cui J, Jiang W (2013) Size selective incorporation of gold nanoparticles in diblock copolymer vesicle wall. Langmuir 29:10383–10392

    Article  CAS  Google Scholar 

  19. Sanchez-Gaytan BL, Li S, Kamps AC, Hickey RJ, Clarke N, Fryd M, Wayland BB, Park SJ (2011) Controlling the radial position of nanoparticles in amphiphilic block-copolymer assemblies. J Phys Chem C 115:7836–7842

    Article  CAS  Google Scholar 

  20. Mai YY, Eisenberg A (2011) Controlled incorporation of particles into the central portion of block copolymer rods and micelles. Macromolecules 44:3179–3183

    Article  CAS  Google Scholar 

  21. Hickey RJ, Haynes AS, Kikkawa JM, Park SJ (2011) Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles. J Am Chem Soc 133:1517–1525

    Article  CAS  Google Scholar 

  22. Niu D, Li Y, Ma Z, Diao H, Gu J, Chen H, Zhao W, Ruan M, Zhang Y, Shi J (2010) Preparation of uniform, water-soluble, and multifunctional nanocomposites with tunable sizes. Adv Funct Mater 20:773–780

    Article  CAS  Google Scholar 

  23. Hickey RJ, Sanchez-Gaytan BL, Cui WH, Composto RJ, Fryd M, Wayland BB, Park SJ (2010) Morphological transitions of block-copolymer bilayers via nanoparticle clustering. Small 6:48–51

    Article  CAS  Google Scholar 

  24. Nie X, Xu J, Cui J, Yang B, Jiang W (2013) Encapsulation of semiconductor quantum dots into the central cores of block copolymer cylindrical and toroidal micelles. RSC Adv 3:24625–24633

    Article  CAS  Google Scholar 

  25. Kim BS, Taton TA (2007) Multicomponent nanoparticles via self-assembly with cross-linked block copolymer surfactants. Langmuir 23:2198–2202

    Article  CAS  Google Scholar 

  26. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    Article  CAS  Google Scholar 

  27. Nie X, Cui J, Jiang W (2014) Ultralong cylindrical micelles precisely located with semiconductor nanorods by solvent evaporation-driven self-assembly. Soft Matter 10:8051–8059

    Article  CAS  Google Scholar 

  28. Chou LYT, Chan WCW (2011) A strategy to assemble nanoparticles with polymers for mitigating cytotoxicity and enabling size tuning. Nanomedicine 6:767–775

    Article  CAS  Google Scholar 

  29. Hickey RJ, Luo Q, Park S-J (2013) Polymersomes and multicompartment polymersomes formed by the interfacial self-assembly of gold nanoparticles and amphiphilic polymers. ACS Macro Lett 2:805–808

    Article  CAS  Google Scholar 

  30. Zhang M, Wang MF, He S, Qian JS, Saffari A, Lee A, Kumar S, Hassan Y, Guenther A, Scholes G, Winnik MA (2010) Sphere-to-wormlike network transition of block copolymer micelles containing CdSe quantum dots in the corona. Macromolecules 43:5066–5074

    Article  CAS  Google Scholar 

  31. Yu YS, Zhang LF, Eisenberg A (1998) Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules 31:1144–1154

    Article  CAS  Google Scholar 

  32. Bhargava P, Zheng JX, Li P, Quirk RP, Harris FW, Cheng SZD (2006) Self-assembled polystyrene-block-poly (ethylene oxide) micelle morphologies in solution. Macromolecules 39:4880–4888

    Article  CAS  Google Scholar 

  33. Liu W, Zhang HS, Ji XL (2016) Influence of mixed common solvent on the co-assembled morphology of PS-b-PEO and CdS quantum dots. Chinese J Polym Sci 34:1079–1090

    Article  CAS  Google Scholar 

  34. Wang T, Bai J, Jiang X, Nienhaus G (2012) Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 6:1251–1259

    Article  CAS  Google Scholar 

  35. Hickey RJ, Meng X, Zhang P, Park S-J (2013) Low-dimensional nanoparticle clustering in polymer micelles and their transverse relaxivity rates. ACS Nano 7:5824–5833

    Article  CAS  Google Scholar 

  36. Chen HY, Abraham S, Mendenhall J, Delamarre SC, Smith K, Kim I, Batt CA (2008) Encapsulation of single small gold nanoparticles by diblock copolymers. ChemPhysChem 9:388–392

    Article  CAS  Google Scholar 

  37. Zhang LF, Eisenberg A (1995) Multiple morphologies of crew-cut aggregates of polystyrene-b-poly (acrylic acid) block-copolymers. Science 268:1728–1731

    Article  CAS  Google Scholar 

  38. Hamada K, Kohri M, Taniguchi T, Kishikawa K (2017) In-situ assembly of diblock copolymers onto submicron-sized particles for preparation of core-shell and ellipsoidal particles. Colloids Surf A Physicochem Eng Asp 512:80–86

    Article  CAS  Google Scholar 

  39. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973

    Article  CAS  Google Scholar 

  40. Sanchez-Iglesias A, Grzelczak M, Altantzis T, Goris B, Perez-Juste J, Bals S, Van Tendeloo G, Donaldson Jr SH, Chmelka BF, Israelachvili JN, Liz-Marzan LM (2012) Hydrophobic interactions modulate self-assembly of nanoparticles. ACS Nano 6:11059–11065

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Startup Foundation for Doctors funded by the University of South China (2015XQD10), General Project for Scientific Research funded by Education Department, Hunan Province (16C1317), and Planned Project for Science and Technology Development in Hengyang City (2016KJ52).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Xu, Y. & Zhang, Y. Structural control of the hybrid colloids by cooperative assembly of PS-b-PAA and semiconductor nanoparticles from the solvent aspects. Colloid Polym Sci 295, 817–826 (2017). https://doi.org/10.1007/s00396-017-4070-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4070-4

Keywords

Navigation